Abstract:
Cutting fluids for brittle materials, e.g., silicon ingot, comprise, in weight percent: A. 70-99% polyalkylene glycol (PAG), e.g., polyethylene glycol; B. 0.01-10% PAG-grafted polycarboxylate; and C. 0-30% water. These cutting fluids are used with abrasive materials, e.g., silicon carbide (SiC), to form cutting slurries. The slurry is sprayed on the cutting tool, e.g., a wire saw, to cut a brittle work piece, e.g., a silicon ingot.
Abstract translation:用于脆性材料例如硅锭的切削液包含重量百分比:A.70-99%的聚亚烷基二醇(PAG),例如聚乙二醇; B. 0.01-10%PAG接枝的聚羧酸酯; 和0-30%的水。 这些切削液与研磨材料(例如碳化硅(SiC))一起使用以形成切割浆料。 将浆料喷涂在切割工具,例如线锯上,以切割脆性工件,例如硅锭。
Abstract:
Lubricating compositions for use in the casting of steel, in particular in continuous casting processes are provided. Methods for making and using such compositions are also provided.
Abstract:
To provide a water-based lubricant for plastic working excellent in moisture absorption resistance and corrosion resistance, with which degradation in lubricating performances such as lubricity, workability and seizure resistance may not occur even under high-temperature/high humidity environments.A water-based lubricant for plastic working, comprising a resin component containing a copolymer or homopolymer of monomers having an ethylenically unsaturated bond, including at least maleic anhydride (A), an inorganic component (B), and a solid lubricating component (C), wherein maleic anhydride moieties of the resin component (A) are blocked with a nitrogen-containing compound at a blocking ratio of 10 to 80%, and unblocked maleic anhydride moieties are neutralized with an alkaline component at a degree of neutralization of 40 to 100%.
Abstract:
The passage of a container along a conveyor is lubricated by applying to the container or conveyor a lubricant composition comprising a water-miscible silicone material having a silicone emulsion wherein the silicone emulsion contains less than 500 ppm of a triethanolamine salts of alkyl benzene sulfonic acid compounds.
Abstract:
The passage of a container along a conveyor is lubricated by applying to the container or conveyor a lubricant composition comprising a water-miscible silicone material having a silicone emulsion wherein the silicone emulsion contains less than 500 ppm of a triethanolamine salts of alkyl benzene sulfonic acid compounds.
Abstract:
The invention relates to thermally conductive greases that may contain carrier oil(s), dispersant(s), and thermally conductive particles, wherein the thermally conductive particles are a mixture of at least three distributions of thermally conductive particles, each of the at least three distributions of thermally conductive particles having an average (D50) particle size which differs from the other average particle sizes by at least a factor of 5
Abstract:
The present invention concerns friction reducers for use in lubricating oil compositions which comprise certain groups of aromatic compounds, esters, narrow mixtures of base stocks, and/or amorphous polymers such as amorphous olefin copolymers. These compositions can provide substantial reductions in the coefficient of friction and fuel economy improving is benefits when admixed to lubricating oils without deleterious effects such as instability, undesirable high viscosities and deposits. In one aspect of the invention, pentaerythritol esters and optionally triol esters are added to lubricating oil compositions to provide reduced friction and improved fuel economy. In a second aspect of the invention, similar results are obtained by adding hydrocarbyl aromatics to a lubricating oil composition containing one or more of Groups II and III base stock. In a third aspect, the invention concerns a lubricating oil composition comprising an amorphous olefin copolymer and one or more of Groups II and III base stocks. In one embodiment, the third aspect also includes one or more of hydrocarbyl aromatics and polyol esters as part of the composition. In a forth aspect, moderate concentrations of hydrocarbyl aromatics are used in a lubricating oil composition comprising paraffinic base oil stocks and preferably a borated polyisobutenyl succinimide ashless dispersant.
Abstract:
According to the invention there is provided a liquid friction control composition characterized as either having a high and positive friction characteristic or a low and neutral friction characteristic, comprising a retentivity agent. The liquid friction control composition may also comprise other components such as a solid lubricant, a wetting agent, a consistency modifier, and a preservative. The liquid friction control compositions may be used to modify the interfacial friction characteristics in sliding and rolling-sliding contact such as steel wheel-rail systems including mass transit and freight systems.
Abstract:
This invention relates to novel water soluble metal working fluid compositions, their use to work metal, a process for working metal using such compositions and the metal worked article of manufacture. More particularly, this invention relates to fluid compositions useful in cutting, grinding, shaping and other metal working operations which require a lubricant. The terms “first Group A” and “second Group B” are used herein to denote different groups and not to indicate any sequence of use or selection as any possible combination or sequence of use of a component(s) is envisioned without limit of any kind. The disclosed fluid compositions are also anticorrosive and environmentally more acceptable than current oil based fluids. There has now been discovered an essentially odorless, substantially non-oil misting, water-soluble metal working fluid comprising at least one component selected from a first Group A herein and optionally one or more components selected from a second Group B herein preferably with the balance of the composition being water and other (optional) minor ingredients. When a component is employed from Group A and a component is employed from Group B the action of the combination generally enhances performance of the resulting combination with contain moieties from both Group A and Group B.
Abstract:
In order to free a seized valve, an inspection port is formed in a wall of the valve body and the areas where the valve is seized are determined. One or more injection ports are formed in the valve body adjacent to the seized portions of the valve, pressurized fluid (preferably an insoluble lubricant having a very high cone penetration) is injected through the or each injection port and the injection ports are then closed.