Abstract:
The disclosure concerns an aqueous lubricant composition, characterized in that it comprises of: 50 wt % of water, 0.01-20 wt % of a thickening agent, 0.5-10 wt % of an antioxidant; 0.5-5 wt % of a pH regulating agent; and glycerol. There is also provided a method for manufacturing the aqueous lubricant composition, and uses of said aqueous lubricant composition.
Abstract:
The invention relates to water-based hydraulic fluids comprising a) water, b) at least one glycol, a polyglycol, or both, and c) 0.1 to 30 wt % of at least one compound of formula 1, where M is hydrogen, an alkali metal, an alkali earth metal, or ammonia, Ar1 and Ar2 are independently monocyclic or polycyclic aromatic groups that can have substituents or can comprise heteroatoms.
Abstract:
The present invention provides a friction control composition comprising a binder a rheological control agent, and optionally a lubricant. The liquid friction control composition may also comprise other components a wetting agent, a consistency modifier, and a preservative. The liquid friction control compositions may be used to modify the interfacial friction characteristics in sliding and rolling-sliding contact such as steel wheel-rail systems including mass transit and freight systems. A method of reducing lateral force, reducing energy consumption, or controlling friction between a metal surface and a second metal surface by applying the composition to metal surface, for example a top of rail or wheel, is also provided. The composition may be sprayed onto the rail surface.
Abstract:
A water-based lubricant composition, comprising: water, molybdenum disulfide, polytetrafluoroethylene, and a polymeric binder, wherein the binder is an acrylic resin or a polyurethane resin.
Abstract:
A refrigerating machine oil for a carbon dioxide refrigerant according to the invention is a refrigerating machine oil comprising polyalkylene glycol represented by the following general formula (1): R1{—(OR2)n—OH}m (1) [where R1 represents a residue of an organic compound having a hydroxyl group, from which the hydroxyl group has been removed, R2 an alkylene group, and m and n respective integers], wherein a number average molecular weight of the polyalkylene glycol is not less than 500 nor more than 5000, wherein a rate of ethylene group among the alkylene group in the polyalkylene glycol is more than 0 and not more than 80 mol %, and wherein a rate of molecules in which the alkylene group bonded to a terminal hydroxyl group in the polyalkylene glycol is an ethylene group, is not more than 20 mol %.
Abstract:
The present invention relates generally to the field of metal conversion surfaces, in particular, the creation of a phosphate-metal chemisorbed layer for iron and aluminum parts as well as to other metal substrates capable of forming a conversion surface. A phosphorus-containing solution is brought into contact with the metal components such that a conversion surface is formed.
Abstract:
According to the invention there is provided a liquid friction control composition characterized as either having a high and positive friction characteristic or a low and neutral friction characteristic, comprising a retentivity agent. The liquid friction control composition may also comprise other components such as a solid lubricant, a wetting agent, a consistency modifier, and a preservative. The liquid friction control compositions may be used to modify the interfacial friction characteristics in sliding and rolling-sliding contact such as steel wheel-rail systems including mass transit and freight systems.
Abstract:
A lubricant coating disposed between a substrate and a counter surface comprises a reaction layer immediately adjacent the substrate. A bonding layer is immediately adjacent the reaction layer, with the bonding layer comprising a first composition. A low friction, lubricious layer is immediately adjacent the bonding layer, with the lubricious layer comprising a second composition that is different from the first composition.
Abstract:
A perfluoropolyether, a composition comprising the perfluoropolyether, a process for producing the perfluoropolyether, and a process for improving the thermostability of grease or lubricant are provided. The perfluoropolyether comprises perfluoroalkyl radical end groups in which the radical has at least 3 carbon atoms per radical and is substantially free of perfluoromethyl and perfluoroethyl end groups. The process for producing the perfluoropolyether can comprise (1) contacting a perfluoro acid halide, a C2- to C4-substituted ethyl epoxide, or a C3null fluoroketone with a metal halide to produce an alkoxide; (2) contacting the alkoxide with either hexafluoropropylene oxide or tetrafluorooxetane to produce a second acid halide; (3) esterifying the second acid halide to an ester; (4) reducing the ester to its corresponding alcohol; (5) converting the alcohol with a base to a salt form; (6) contacting the salt form with a C3 or higher olefin to produce a fluoropolyether; and (7) fluorinating the fluoropolyether. The process for improving the thermostability of a grease or lubricant comprises combining the grease or lubricant with the composition.
Abstract:
This invention discloses novel catalyzed surface composition altering formulations and methods and catalyzed surface coating formulations and methods, which contain one or more catalysts, along with optional other ingredients, wherein the catalysts serve to effect in situ chemical bonding reactions in that the catalysts function to initiate, to promote, to accelerate, and/or to increase the formation and yield of persistent, solid, corrosion-resistant, impact-resistant, wear-resistant, and/or non-stick surface compositions and surface coating films, which may exhibit pigmentation and other aesthetic features, and may be designed to be environmentally benign. The disclosed formulation and methods may be used to alter the surface composition and to coat the surfaces of vehicles, such as aircraft, and to improve the anti-icing characteristics of the vehicle surfaces.