Abstract:
A method for disposing of solid refinery waste is disclosed. The method includes removing solid waste constituents from inside a refinery tank using excavating machinery, delumping the solid waste constituents, and conveying the delumped solid waste constituents into a mobile tank. The method further includes transporting the delumped solid waste constituents in the mobile tank to a burning facility, adding at least one diluent, mixing, and pumping from the mobile tank a flowable mixture of refinery waste and the at least one diluent at the burning facility.
Abstract:
A process for the remediation of contaminated particulate materials by the addition of an environmentally benign, carbonaceous fuel source in low concentration to enable or enhance smoldering combustion. The process may be applied to both in situ and ex situ treatments. In an ex situ smoldering process for the remediation of contaminated particulate materials in a continuous manner, contaminated feed is introduced near the top of a treatment unit and treated product emerges near the bottom. A smoldering front is maintained in the unit, fed by the fuel in the contaminated particulate material and a supply of combustion-supporting gas, such as air.
Abstract:
An apparatus for mixing tank contents including sedimentary material is disclosed. The apparatus includes an agitator connected to a support including a plurality of detachable sections. The apparatus further includes a frame adjacent an opening in a top of the tank. The apparatus also includes an actuatable connector for interconnecting the frame to the support. The connector is configured to be actuated in order to lift a first portion of the support above the frame while a second portion of the support below the frame is maintained, to thereby cause a gap between the first portion and the second portion enabling at least one of the detachable sections to be inserted into the gap. The apparatus also includes at least one actuator for causing the connector to lift the first portion in order to cause the gap, and for lowering the first portion and the second portion.
Abstract:
A vehicle configured to carry solid refinery waste is disclosed. The vehicle includes a mobile tank including a plurality of compartments and at least one buffer disposed between each of the plurality of compartments. The vehicle further includes a plurality of manhole openings on a top wall of the tank, each manhole opening being associated with one of the plurality of compartments and being sized to enable an agitator to pass therethrough. The vehicle also includes a plurality of connectors, each connector being affixed to the mobile tank for movement therewith to selectively secure the agitator and a plurality of fluid valves sized to permit an emulsion of the solid refinery waste and at least one diluent to pass therethrough in flowable form.
Abstract:
Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, methods of making the fuel feed stocks, methods of producing energy from the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles and contain a sorbent. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels. In addition, one or more sorbents can be added to the feed stocks in order to reduce the amount of a variety of pollutants present in traditional fuel and feed stocks, including, but not limited, sulfur and chlorine. Further, these feed stocks with added sorbent can mitigate corrosion, improve fuel conversion, extend power generating plant lifetime, reduce ash slagging, and reduced operating temperature.
Abstract:
The invention provides a method and apparatus for incinerating waste, wherein the waste is one or more of an organic waste and an inorganic waste. The apparatus includes a grinder for grinding a mixture of the waste and calcium carbonate. The ground mixture is then fed to a molten metal bath contained within a crucible. Thereafter, a heating member configured proximal to the crucible combusts the mixture of the waste and the calcium carbonate to form one or more of slag and one or more acidic gases. On combustion, the one or more acidic gases are neutralized by calcium hydroxide produced as a result of combusting the calcium carbonate. Additional metal compounds usable as fertilizers are also produced in response to reacting with the one or more acidic gases.
Abstract:
An automated system and method are provided for conveying plant material bales. The system and method retrieves stacked bales from a storage site and places the bales on a conveyor assembly line, wherein the bales are indexed, accumulated, and metered for discharge into a bale shredder. Once the bales are on the conveyor assembly, the bales are automatically moved and arranged without manual intervention.
Abstract:
Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, methods of making the fuel feed stocks, methods of producing energy from the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles and contain a sorbent. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels. In addition, one or more sorbents can be added to the feed stocks in order to reduce the amount of a variety of pollutants present in traditional fuel and feed stocks, including, but not limited, sulfur and chlorine. Further, these feed stocks with added sorbent can mitigate corrosion, improve fuel conversion, extend power generating plant lifetime, reduce ash slagging, and reduced operating temperature.
Abstract:
A reduction treatment apparatus can include a reduction furnace configured to reduce zinc and/or iron oxide thorough heat treatment of zinc-containing iron oxide or zinc oxide or iron oxide, with a reducing material. The reduction treatment apparatus also has an oxide inlet configured to supply to the reduction furnace the zinc-containing iron oxide or zinc oxide or iron oxide. The reduction treatment apparatus further has a reducing material inlet configured to supply to the reduction furnace the reducing material. The reducing material can comprise at least one of ASR, shredder dust of home electric appliances, waste plastics, PDF, RPF, sludge, oil mud, chips of wood, thread debris, rubber debris, and animal and plant residues. The reduction furnace can be configured to use the reducing material as a heating material and reduce the zinc-containing iron oxide or zinc-oxide or iron oxide without auxiliary fuel.
Abstract:
A method is provided for heavy metal stabilisation comprising: mixing waste, comprising heavy metals, with molecular sieve with the proviso that carbon-based molecular sieve is excluded, and clay; and vitrifying the mixture. In particular, a method comprising the steps of: preparing a pre-stabilised mixture by mixing waste, comprising heavy metals, with the molecular sieve, and optionally other chemicals; mixing the pre-stabilised mixture with clay; and vitrifying the obtained mixture is provided. It also provides a product comprising heavy metals that have been stabilised into the structure of the clay-based ceramic matrix, wherein the product is a vitrified product of a mixture of at least waste, comprising heavy metals, molecular sieve (with the proviso that carbon-based molecular sieve is excluded) and clay.