Abstract:
A connector assembly formed by attaching two stamped housing sections to form a connector housing having a housing groove with a groove bottom and two side walls. Using stamped housings reduces manufacturing costs and simplifies assembly, among other things. The connector housings with spring can be used as a mechanical connector and/or as an electrical connector for numerous applications and across numerous industries. The groove geometries can easily be altered using different stamping dies.
Abstract:
An implantable lead includes a pipe, a flexible conductive layer, at least one connector, at least one contactor and at least one wire. The pipe includes a first end portion, a second end portion opposite to the first end portion, and a middle portion connecting the first end portion and the second end portion. The flexible conductive layer is located on the middle portion of the pipe. The at least one connector is located on the first end portion of the pipe. The at least one contactor is located on the second end portion of the pipe. The at least one wire is located in the pipe and electrically connects the at least one connector and the at least one contactor. A medical device using the implantable lead is also provided.
Abstract:
A connector assembly according to embodiments of the present disclosure is advantageously configured to allow a sensor connector to straightforwardly and efficiently join with and detach from a patient cable connector. Further, embodiments of the connector assembly advantageously reduce un-shielded area in an electrical connection between a patient cable and a sensor connector. In addition, embodiments of the connector assembly advantageously increase the shielding of detector signals coming from the patient sensor to the monitor.
Abstract:
A method for making an implantable lead is related. A pipe is provided. The pipe includes a first end portion, a second end portion opposite to the first end portion, and a middle portion connecting the first end portion and the second end portion. A flexible conductive layer is formed on the middle portion of the pipe. At least one contactor is applied on the first end portion of the pipe. At least one connector is applied on the second end portion of the pipe. At least one wire is placed in the pipe to electrically connect the at least one contactor and the at least one connector.
Abstract:
An implantable active fixation cardiac lead is disclosed that includes an elongated lead body having opposed proximal and distal end portions and having an interior lumen extending therethrough, an axially rotatable extendable and retractable fixation helix operatively associated with the distal end portion of the lead body, a rotatable in-line quadripolar connector assembly operatively associated with the proximal end portion of the lead body and including an elongated rotatable pin electrode having opposed proximal and distal end portions, and an elongated torque transmitting conductor coil extending through the interior lumen of the lead body and having a proximal end portion connected to the distal end portion of the rotatable pin electrode and a distal end portion connected to the rotatable fixation helix, to facilitate manual activation of the fixation helix.
Abstract:
A header for use in implantable pulse generator devices. The header is part of electrical connector assembly having one or more openings designed to receive the terminal pin of an electrical lead wire or electrode. The header is designed to provide and sustain long-term electrical and mechanical lead wire connections between the electrodes of a terminal pin and the implantable pulse generator device.
Abstract:
A header for use in implantable pulse generator devices. The header is part of electrical connector assembly having one or more openings designed to receive the terminal pin of an electrical lead wire or electrode. The header is designed to provide and sustain long-term electrical and mechanical lead wire connections between the electrodes of a terminal pin and the implantable pulse generator device.
Abstract:
Implantable medical devices include connector enclosure assemblies that utilize conductors electrically coupled to feedthrough pins that extend into a can where electrical circuitry is housed. The conductors may be coupled to the feedthrough pins and to capacitor plates within a filter capacitor by an electrically conductive bonding material and as a single bonding event during manufacturing. The base plate of the connector enclosure assembly may also include a ground pin. Ground capacitor plates may be present at a ground aperture of the filter capacitor where the ground pin passes through so that the ground pin, a ground conductor, and the ground capacitor plate may be coupled. A protective cover may be provided for the connector enclosure assembly to enclose the conductors intended to extend into the can prior to the assembly being joined to the can. Conductors may be attached to a common tab that is subsequently removed.
Abstract:
The present invention is directed to a system and method for providing care to a patient, comprising a patient care device having a number of configuration databases stored in a memory in the device. Each configuration database preferably includes protocols, operating limits, rule sets and/or operating features that collectively define an operating environment, or personality, of the device. Selection of a specific configuration database preferably is based at least in part upon patient-specific information obtained from any location in a distributed hospital network. Examples of such patient-specific information include patient age or size, patient medical characteristics, a location of the patient or a location of the care device. In a preferred embodiment, programming a patient care device to deliver a drug to a patient entails activating a configuration database and scanning a machine-readable drug label identifying a particular protocol stored in the activated database. The selected protocol includes default parameters for delivering the drug, and the label optionally includes instructions for deviating from the default protocol.
Abstract:
Defibrillator lead designs and methods for manufacturing a lead having attachment between a fibrosis-limiting material covering, a shocking coil electrode, and an implantable lead body are disclosed herein. An electrode coil fitting is disposed within the shocking coil electrode. In an option, the fibrosis limiting material extends past the ends of the electrode coil, and is wrapped between the coil electrode and the electrode coil member.