Abstract:
A multi-lightguide document imaging device is proposed for scanning a document transported atop it. The device includes: a line image sensor module having a top sensing area and built-in circuitry for converting an incident line image into video signal output. an intervening rod lens for focusing line image lights from the document onto the sensing area. a number of lightguides lightguide-j (j=1, 2, . . . , N) disposed below the document where each lightguide-j has its own built-in light sources, a transverse cross section spaced at a distance SPCj from the scan line and oriented angularly along a θ-coordinate so as to project a line-illumination aiming at the scan line. an imager frame having a base for holding the line image sensor module, a multi-element support for holding the rod lens plus the lightguides and a scan line backing portion for backing the document.
Abstract:
An illuminator includes a light guide having a circular cross-section, a scatterer that is provided on a portion of the circumference of the circular cross-section and that radiates scattering light toward the inside of the light guide, and a condensing lens that condenses light emitted from the light guide and transforms the light into a linear beam, a planar beam. or a point-like beam. In the illuminator light from the light source is effectively utilized, and the light can efficiently illuminate the required illumination area. In addition, an image reader apparatus can perform high-speed reading using such an illuminator.
Abstract:
An image-sensing module using white LEDs as a light source thereof comprises a printed circuit board, a contact image-sensing element, a rod lens, and a white LED element, wherein the contact image-sensing element is mounted on the printed circuit board, the rod lens provided above the contact image-sensing element, and the white LED element is provided on a side of the rod lens. The white LED element emits a light beam to a document to generate a light reflected from the document to the contact image-sensing element, and then the contact image-sensing element can sense the image of the document via the rod lens.
Abstract:
Disclosed herein is a television apparatus including: a thin display device; a mount section to be placed in a site; a support mechanism projecting upwardly from the mount section and supporting the display device in an upper portion spaced from the mount section in a manner to allow the display device to change an attitude thereof; a first speaker mounted on the display device; a second speaker mounted on the mount section; a signal supply section configured to supply a first audio signal to the first speaker and to supply a second audio signal to the second speaker; and a signal processor configured to adjust the time difference between the timing of the first audio signal output from the signal supply section and the timing of the second audio signal output from the signal supply section.
Abstract:
A lens array 4 is formed as an erect 1:1 imaging lens by superimposing two lens plates 40 and 40 together. Each lens plate 40 consists of a number of micro lenses 41 which are regularly provided at a predetermined pitch and in a two-dimensional manner. This lens plate 40 is for example made by press molding the ultraviolet curing resin in a soft condition using a transparent mold and by irradiating the ultraviolet light on the ultraviolet curing resin from outside for hardening. Since the lens array 4 is provided with micro lenses 41 in rows in a sub-scanning direction, deterioration of an amount of light level resulting from the displacement between a light axis of the lens and an image sensor 6 is not generated.
Abstract:
A contact-type image sensor includes a case having an upper surface formed with an opening, a cover glass closing the opening and providing a linear reading region extending in the primary scanning direction. A sheet as an object to be read, coming into contact with the linear reading region, is reciprocally moved in the secondary scanning direction which is perpendicular to the primary scanning direction. The opening is defined by a pair of edges of the case spaced in the secondary scanning direction. Each of the edges includes a convex surface having a top positioned above the outer surface of the cover glass.
Abstract:
An imaging system includes an illumination system and an optical module which are used together to scan media. The illumination system is composed of a tubular diffusion platen, a light source, and a reflector. The optical module comprises a rotating optical platen that rotates around an imaging assembly composed of a lens array, an optical element, a linear sensor array, an interconnect circuit, and a housing. The optical platen is transparent to allow the imaging assembly to capture and image of the transparent media and functions to accurately locate the transparent media in the optimal focus plane.
Abstract:
A method of transferring communication between communication channels of differing bandwidth comprises establishing data communications on a first channel having a first bandwidth, establishing data communications on a second channel in response to a trigger indicating changes in the data to be communicated, wherein the second channel has a bandwidth providing resources different from the first bandwidth of the first channel. The method further comprises releasing communications on the first channel in response to set up of data communications on the second channel.
Abstract:
To present a moving picture processing device having a user interface very easy to use when selecting part of moving pictures from multiple moving pictures. The moving picture processing device comprises a moving picture display unit for displaying whole or part of plural stored moving pictures sequentially, an input accepting unit for accepting an input for display of moving picture, a moving picture menu compiling unit for compiling a menu of moving pictures displayed when the input accepting unit accepts the input, and a menu display unit for displaying a menu of moving pictures compiled by the moving picture menu compiling unit.
Abstract:
There is a problem that the contact-type image sensor, for adoption in an image input/output apparatus to input/output the image of a large-sized document, such as A0 or A1 size, is weak in lengthwise rigidity and readily deflected at its lengthwise center by its own weight. Accordingly, by attaching a deformation rectifier to the image sensor in a lengthwise direction thereof, the contact type image sensor is reinforced in lengthwise rigidity. The deformation rectifier reinforces the rigidity of the contact type image sensor, thereby preventing the contact type image sensor from deflecting vertically relative to its lengthwise direction and keeping constant the focal length between the surface of the document to be read and the sensor IC.