Abstract:
A method for manufacturing multilayer flexible circuits is disclosed. The cross-sectional area of an unoccupied signal layer volume is initially determined. The unoccupied signal layer includes multiple conductive elements, and the unoccupied signal layer volume is formed between two of the conductive elements. Next, the thickness of an adhesive layer for filling the unoccupied signal layer volume is determined. Finally, the thickness of the adhesive layer is adjusted such that the adhesive layer only fills the unoccupied signal layer volume while the two conductive elements come in direct contact with a dielectric layer without any adhesive in between.
Abstract:
A method for manufacturing a multilayer ceramic electronic element includes the steps of forming ceramic green sheets having superior surface smoothness and small variations in thickness at a high speed, in which defects such as pinholes are prevented from occurring, and providing internal electrodes and step-smoothing ceramic paste on the ceramic green sheets with high accuracy. The method includes the steps of applying ceramic slurry to a base film by a die coater followed by drying performed in a drying furnace for forming the ceramic green sheets, and performing gravure printing of conductive paste and ceramic paste onto the ceramic green sheets by using a first and a second gravure printing apparatus, respectively. Accordingly, the internal electrodes are formed, and the step-smoothing ceramic paste is provided in regions other than those in which the internal electrodes are formed.
Abstract:
Provided are connection structures for a microelectronic device and methods for forming the structure. A substrate is included having opposing surfaces and a plurality of holes extending through the surfaces. Also included is a plurality of electrically conductive posts. Each post extends from a base to a tip located within a corresponding hole of the substrate. An additional substrate may be provided such that the base of each post is located on a surface thereof. Additional electrically conductive posts may be provided having tips in corresponding holes of the additional substrate. Optionally, a dielectric material may be placed between the substrate and the posts.
Abstract:
A method for manufacturing a printed circuit board includes: forming inner circuit patterns in an insulating material in multi-layers, forming a plurality of through holes at certain portions of the insulating material, and forming an outer circuit pattern which is electrically connected to the inner circuit pattern, at an inner circumferential surface of the through hole and the surface of the insulating material, and a terminal portion; forming a first photo solder resist layer at an entire surface of the insulating material and an entire surface of the outer circuit pattern, and exposing the terminal portion by removing a specific portion of the first photo solder resist layer; abrading the surface of the first photo solder resist layer; printing a second photo solder resist layer at the surface of the first photo solder resist layer, and exposing the terminal portion to the outside by removing a specific portion of the second photo solder resist layer; and forming a pad portion by plating the surface of the exposed terminal portion with gold, and electrically connecting the pad portion and the terminal portion.
Abstract:
It comprises circuit board 10 with circuit pattern 2 formed by conductive resin paste on resin substrate 1, surface-mounted type electronic components 30, 40 arranged with electrode terminals with respect to the connecting region of circuit pattern 2, connecting member 3 formed from conductive resin paste for connecting the connecting region to the electrode terminal, and insulating adhesive 6 for bonding the electronic components 30, 40 and circuit board 10, which is lower in curing temperature than conductive resin paste and disposed in a space between circuit board 10 and electronic components 30, 40 between connecting regions.
Abstract:
Disclosed is a PCB including an embedded capacitor, in which a dielectric layer and an upper electrode layer are formed after a lower electrode layer of the embedded capacitor is formed, thereby providing a microcircuit pattern on a circuit layer having a lower electrode layer formed thereon, and a method of fabricating the same.
Abstract:
A substrate including a first patterned metallic layer, a second patterned metallic layer and an insulator is provided. One side of the first patterned metallic layer is connected to a corresponding side of the second patterned metallic layer. The first patterned metallic layer and the second patterned metallic layer are formed as a whole. The insulator fills the gaps in the first patterned metallic layer and the gaps in the second patterned metallic layer.
Abstract:
A multilayer circuit board comprises a conductor wiring layer, and an insulation layer, wherein the conductor wiring layer and the insulation layer are laminated alternately, wherein the conductor wiring layer is electrically connected by a via through the insulation layer, wherein the via is filled with a conductor material, and wherein the conductor material is junctured to the conductor wiring layer with an alloy.
Abstract:
A multi-layer circuit board and a method for fabricating the same are proposed. A plurality of circuit board units are prepared and formed with patterned circuit layers thereon. At least one insulating layer is formed on each of the circuit board units. The insulating layer is patterned to form a plurality of opening or is thinned to expose contact pads of the circuit layers on the circuit board units. The circuit board units undergo surface activation and laminating processes in vacuum to form a multi-layer circuit board, wherein the circuit board units are laminated and electrically connected together by the exposed contact pads. This method reduces the time and cost for fabrication.
Abstract:
A method for manufacturing a multilayer ceramic electronic element includes the steps of forming ceramic green sheets having superior surface smoothness and small variations in thickness at a high speed, in which defects such as pinholes are prevented from occurring, and providing internal electrodes and step-smoothing ceramic paste on the ceramic green sheets with high accuracy. The method includes the steps of applying ceramic slurry to a base film by a die coater followed by drying performed in a drying furnace for forming the ceramic green sheets, and performing gravure printing of conductive paste and ceramic paste onto the ceramic green sheets by using a first and a second gravure printing apparatus, respectively. Accordingly, the internal electrodes are formed, and the step-smoothing ceramic paste is provided in regions other than those in which the internal electrodes are formed.