Abstract:
The present disclosure relates to a system and method for synthesis of condensed nano-materials to at least one of create nanoparticles or modify existing nanoparticles. In one embodiment the system may have a source of liquid precursor, with the liquid precursor including a compound therein. A flow control element and a compression wave generating subsystem are also included. The flow control element is in communication with the source of the liquid precursor and creates a jet of liquid precursor. The compression wave generating subsystem drives a compression wave through at least a substantial portion of a thickness of the jet of liquid precursor to sufficiently compress the jet of liquid precursor, and to increase pressure and temperature of the jet of liquid precursor, to at least one of create nanoparticles or modify existing nanoparticles.
Abstract:
A method and system of using a type of wave rotor to reform a hydrocarbon fluid using pressure waves within the wave rotor to reformulate a hydrocarbon fluid, such as methane or the like, into a lighter hydrocarbon, hydrogen, or, in some instances, hydrogen, partially decomposed hydrocarbon fluid and carbon solids.
Abstract:
Chemical reactors (10) and methods crack hydrocarbons in process fluids by accelerating the process fluid to a velocity greater than Mach 1 with an axial impulse impeller (40) and generating a shock wave (90) in the process fluid by decelerating it in a static diffuser (70) having diverging diffuser passages (72). Temperature increase of the process fluid downstream of the shockwave cracks the entrained hydrocarbons in a single pass, through a unidirectional flow path (F), within a single stage, without recirculating the process fluid for another pass through the same stage. In some embodiments, the turbomachine chemical reactor (110) has multiple successive stages of one or more axial impulse impellers (40A, 40B), paired with a diverging passage, static diffuser (70). Successive stages crack additional hydrocarbons by successively raising temperature of the flowing process fluid.
Abstract:
Chemical reactors (10) and methods crack hydrocarbons in process fluids by accelerating the process fluid to a velocity greater than Mach 1 with an axial impulse impeller (40) and generating a shock wave (90) in the process fluid by decelerating it in a static diffuser (70) having diverging diffuser passages (72). Temperature increase of the process fluid downstream of the shockwave cracks the entrained hydrocarbons in a single pass, through a unidirectional flow path (F), within a single stage, without recirculating the process fluid for another pass through the same stage. In some embodiments, the turbomachine chemical reactor (110) has multiple successive stages of one or more axial impulse impellers (40A, 40B), paired with a diverging passage, static diffuser (70). Successive stages crack additional hydrocarbons by successively raising temperature of the flowing process fluid.