Abstract:
Methods and compositions are provided for refining natural oils and for producing high-weight esters, high-weight acids, and/or high-weight derivatives thereof, wherein the compositions are made by cross-metathesizing low-weight unsaturated esters or low-weight unsaturated acids having hydrocarbon chain lengths less than or equal to C24 with an olefin feedstock, thereby forming a metathesized product composition including high-weight esters or high-weight acids having hydrocarbon chain lengths greater than C18, wherein at least a portion of the hydrocarbon chain lengths in the metathesized product are larger than the hydrocarbon chain lengths in the starting feedstock.
Abstract:
A process for converting ethane to liquid fuels may involve directing an ethane stream into an ethane cracking unit to produce an intermediate hydrocarbon stream and a raw ethylene stream; fractionating the intermediate hydrocarbon stream into a gasoline fraction and a diesel fraction; introducing the raw ethylene stream into an oligomerization unit; contacting the raw ethylene stream with an oligomerization catalyst to produce a liquid hydrocarbon stream and an off-gas stream; recycling an off-gas recycle stream from an off-gas stream of the oligomerization unit separation unit to an inlet of the oligomerization reactor; introducing at least part of the off-gas stream into a hydrogenation reactor to remove unconverted olefins; separating a hydrogen component and a plurality of light paraffin components in a post hydrogenation reactor separation unit using a PSA technology or membrane technology; and recycling the light paraffins stream into the ethane cracking unit.
Abstract:
Methods of maximizing diesel production are describes. The methods include providing a stream of heavy heavy naphtha; and blending the stream of heavy heavy naphtha with a diesel stream from the crude distillation zone to increase diesel production while maintaining the blended diesel stream within a specification for diesel. Various apparatus for maximizing diesel production are also described.
Abstract:
An apparatus and methodology is presented for magnetically conditioning any hydrocarbon based fluid flowing through a conduit or pipe. The object of the invention is to advance the art by increasing the range of application, the effectiveness, the simplicity and the ease of use of a magnetic fluid conditioning device. The invention accomplishes this by a unique magnetic and mechanical configuration, not taught in the art or previously known to the applicants.
Abstract:
The present invention describes a process for the production of fuel of the heavy fuel oil type, this fuel optionally being able to become a marine fuel, from a heavy hydrocarbon-containing feedstock having a sulphur content of at least 0.5% by weight, an initial boiling temperature of at least 350° C. and a final boiling temperature of at least 450° C., a process using a fixed-bed hydrotreatment stage, an intermediate separation and a hydrocracking stage comprising at least one reactor of the hybrid type.
Abstract:
A highly efficient method for the conversion of a natural product into the high density fuel RJ-4 with concomitant evolution of isobutylene for conversion to fuels and polymers, more specifically, embodiments of the invention relate to efficient methods for the conversion of the renewable, linear terpene alcohol, linalool into a drop-in, high density fuel suitable for ramjet or missile propulsion.
Abstract:
Exemplary embodiments of the invention provide a process of increasing the cetane number rating of a diesel oil feedstock. The process involves reacting a diesel fuel feedstock in liquid form with ozone in gaseous form in the presence of an alcohol having two or more carbon atoms and at least one polar solvent different from the alcohol, thereby forming an ozonated diesel oil containing oxidized byproducts, wherein the alcohol and said polar solvent are employed in amounts totaling no more than about 10 vol. % of the feedstock. The oxidized byproducts are then separated from the ozontated diesel oil to produce a hydrocarbon product of increased cetane number rating relative to the feedstock oil. The product can be used as a diesel fuel or as a diesel fuel extender mixed with conventional diesel fuel of low cetane number.
Abstract:
A process is disclosed for hydrocracking a primary hydrocarbon feed and a diesel co-feed in a hydrocracking unit and hydrotreating a diesel product from the hydrocracking unit in a hydrotreating unit. The diesel stream fed through the hydrocracking unit is pretreated to reduce sulfur and ammonia and can be upgraded with noble metal catalyst.
Abstract:
Distillate feeds are hydroprocessed to produce a product having a low content of polyaromatic hydrocarbons (PAHs). The hydroprocessing includes dewaxing and aromatic saturation of the feed. The temperature of the aromatic saturation process can be controlled to make a distillate product having a desired aromatic content, such as less the 0.02 wt % of polyaromatic hydrocarbons having three or more aromatic rings.
Abstract:
In a first processing chamber, a feedstock may be combined with plasma from three plasma torches to form a first fluid mixture. Each torch may have a working gas including water vapor, oxygen, and carbon dioxide. The first fluid mixture may be cooled and may contact a first heat exchange device. Water in the first heat exchange device may be converted to steam to generate electric power. The output fluid from the first heat exchange device may be separated into one or more components. A syngas may be derived from the one or more components and have a ratio of carbon monoxide to hydrogen of about 1:2. The syngas may be heated in a second processing chamber and then cooled to form a second admixture. The second admixture may contact a second heat exchange device that may make steam to power a second electrical generator.