Abstract:
A release layer composed of AlGaAs, a strain layer, a strain compensation layer composed of an InGaAs, and a component layer are formed on a GaAs substrate. The component layer includes a DBR film. A recess for defining a bent region is formed in the component layer. The component layer, the strain compensation layer, the strain layer, and the release layer are removed in an approximately U shape, thereby forming a groove. The release layer under the strain layer is selectively removed. The strain layer is bent at a region below the recess so as to relax strain caused by the difference in the lattice constant between the InGaAs layer and the GaAs layer, and the component layer stands perpendicularly to the GaAs substrate.
Abstract:
A method for delicately adjusting an orientation of features in completed micro-machined electromechanical sensor (MEMS) devices after initial formation and installation within the device packaging to trim one or more performance parameters of interest, including modulation, bias and other dynamic behaviors of the MEMS devices.
Abstract:
A method of providing a predetermined level and state of stress in a film deposited on a surface of a substrate. In one embodiment, a layer of crystalline material is deposited on a surface of a substrate and then a layer of amorphous material is deposited on the layer of crystalline material. Then, the layers are heated, causing the amorphous material to crystallize. Such crystallization reduces, or even changes the state of, stress in the amorphous layer, which in turn alters the forces applied by the layer to adjacent regions of the substrate. The method may be used for filling a deep-trench capacitor of the type used in trench-storage DRAMs.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a beam structure and an electrode on an insulator layer, remote from the beam structure. The method further includes forming at least one sacrificial layer over the beam structure, and remote from the electrode. The method further includes forming a lid structure over the at least one sacrificial layer and the electrode. The method further includes providing simultaneously a vent hole through the lid structure to expose the sacrificial layer and to form a partial via over the electrode. The method further includes venting the sacrificial layer to form a cavity. The method further includes sealing the vent hole with material. The method further includes forming a final via in the lid structure to the electrode, through the partial via.
Abstract:
A method of manufacturing a MEMS chip includes: providing a silicon substrate layer, the silicon substrate layer comprising a front surface configured to perform a MEMS process and a rear surface opposite to the front surface; growing a first oxidation layer mainly made of SiO2 on the rear surface of the silicon substrate layer by performing a thermal oxidation process; and depositing a first thin film layer mainly made of silicon nitride on the first oxidation layer by performing a low pressure chemical vapor deposition process.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes patterning a wiring layer to form at least one fixed plate and forming a sacrificial material on the wiring layer. The method further includes forming an insulator layer of one or more films over the at least one fixed plate and exposed portions of an underlying substrate to prevent formation of a reaction product between the wiring layer and a sacrificial material. The method further includes forming at least one MEMS beam that is moveable over the at least one fixed plate. The method further includes venting or stripping of the sacrificial material to form at least a first cavity.
Abstract:
A method of forming a Micro-Electro-Mechanical System (MEMS) includes forming a lower electrode on a first insulator layer within a cavity of the MEMS. The method further includes forming an upper electrode over another insulator material on top of the lower electrode which is at least partially in contact with the lower electrode. The forming of the lower electrode and the upper electrode includes adjusting a metal volume of the lower electrode and the upper electrode to modify beam bending.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a beam structure and an electrode on an insulator layer, remote from the beam structure. The method further includes forming at least one sacrificial layer over the beam structure, and remote from the electrode. The method further includes forming a lid structure over the at least one sacrificial layer and the electrode. The method further includes providing simultaneously a vent hole through the lid structure to expose the sacrificial layer and to form a partial via over the electrode. The method further includes venting the sacrificial layer to form a cavity. The method further includes sealing the vent hole with material. The method further includes forming a final via in the lid structure to the electrode, through the partial via.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a beam structure and an electrode on an insulator layer, remote from the beam structure. The method further includes forming at least one sacrificial layer over the beam structure, and remote from the electrode. The method further includes forming a lid structure over the at least one sacrificial layer and the electrode. The method further includes providing simultaneously a vent hole through the lid structure to expose the sacrificial layer and to form a partial via over the electrode. The method further includes venting the sacrificial layer to form a cavity. The method further includes sealing the vent hole with material. The method further includes forming a final via in the lid structure to the electrode, through the partial via.
Abstract:
A method of forming a Micro-Electro-Mechanical System (MEMS) includes forming a lower electrode on a first insulator layer within a cavity of the MEMS. The method further includes forming an upper electrode over another insulator material on top of the lower electrode which is at least partially in contact with the lower electrode. The forming of the lower electrode and the upper electrode includes adjusting a metal volume of the lower electrode and the upper electrode to modify beam bending.