Abstract:
A method for the fractionation of lignocellulosic materials into reactive chemical feedstock in a batch or semi continuous process by the stepwise treatment with aqueous aliphatic alcohols in the presence of sulfur dioxide or acid. Lignocellulosic material is fractionated in a fashion that cellulose is removed as pulp, or converted to esterified cellulose, cooking chemicals are reused, lignin is separated in the forms of reactive native lignin and reactive lignosulfonates and hemicelluloses are converted into fermentable sugars, while fermentation inhibitors are removed. In an integrated vapor compression stripper and evaporator system, aliphatic alcohol is removed from a liquid stream and the resulting stream is concentrated for further processing.
Abstract:
A biomass processing system includes: a hydrolysis processing unit that decomposes, under a high-temperature/high-pressure condition, biomass feedstock in a processing tank having a gas-liquid interface, and removes a lignin component and a hemicellulose component; a biomass solid content discharge unit that discharges a biomass solid content 20 which is a hot water insoluble element; a slurrying vessel that subjects the discharged biomass solid content to slurrying; and a hot water discharge liquid introducing line L2 that introduces, into the slurrying vessel 21, a hot water discharge liquid 16 including a biomass hot-water soluble element.
Abstract:
Biomass feedstocks (e.g., plant biomass, animal biomass, and municipal waste biomass) are processed to produce useful products, such as fuels. For example, systems are described that can convert feedstock materials to a sugar solution, which can then be fermented to produce ethanol.
Abstract:
A method for producing saccharides containing glucose as a main component is described, including degrading cellulose and/or hemicellulose with a cellulase, wherein an additive containing a protein and an amino acid and/or a yeast lysate solution is added to the cellulose and/or hemicellulose and the cellulase is used to cause an enzymatic saccharification reaction of saccharifying the cellulose and/or hemicellulose.
Abstract:
The present technology pertains to improved methods for the conversion of lignocellulosic biomass material to bio-fuels using novel isolated cellulolytic extreme thermophilic bacterial cells belonging to the genus Caldicellulosiruptor, and mutants thereof.
Abstract:
A process for pretreatment of lignocellulosic biomass by a) A stage for acid hydrolysis of the biomass by an acid solution leading to a liquid fraction and to a solid fraction, b) A stage for separation of the solid fraction and the liquid fraction, c) A stage for drying the solid fraction, d) A stage for baking the solid fraction that is dried in a medium by a hydrated inorganic salt of formula: MXn.n′H2O in which M is a metal of groups 1 to 13 of the periodic table, X is an anion, and n is an integer between 1 and 6, and n′ is between 0.5 and 12, making it possible to obtain a solid fraction and a liquid fraction, e) A stage for separation of the solid fraction and the liquid fraction obtained in stage d).
Abstract:
Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems are described that can use feedstock materials, such as cellulosic and/or lignocellulosic materials, to produce ethanol and/or butanol, e.g., by fermentation.
Abstract:
Provided are isolated polypeptides having catalase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Abstract:
Methods are disclosed for increasing the level of soluble C5 saccharides produced from lignocellulosic biomass comprising acidifying fractionated lignocellulosic biomass to prevent the recondensation of soluble C5 saccharides, including C5 oligosaccharides and xylose and arabinose monomers, to insoluble higher molecular weight C5 oligosaccharides.