Abstract:
A four-cycle engine typically including a crankshaft provided with a first gear, a camshaft provided with a second gear, an endless rotation transmission that is installed around the first and second gears and is configured to transmit rotation of the crankshaft to the camshaft, a crank phase detecting device configured to detect a rotational phase of the crankshaft that is obtained by dividing a phase corresponding to one rotation of the crankshaft by a number that is equal to or more than a half of teeth of the second gear of the camshaft, and a cam phase detecting device configured to detect at least one rotational phase of the camshaft.
Abstract:
A variable camshaft timing phaser for an internal combustion engine having at least one camshaft comprising a plurality of vanes in chambers defined by a housing and a spool valve. The vanes define an advance and a retard chamber. At least one of the vanes is cam torque actuated (CTA) and at least one of the other vanes is oil pressure actuated (OPA). The spool valve is coupled to the advance and retard chamber defined by the CTA vane and the advance chamber defined by the OPA vane. When the phaser is in the advance position, fluid is routed from the retard chamber defined by the OPA vane to the retard chamber defined the CTA vane. When the phaser is in the retard position, fluid is routed from the retard chamber defined by the CTA vane to the advance chamber defined by the CTA vane.
Abstract:
A camshaft adjuster for an internal combustion engine having hydraulic medium guides. The adjuster can include a setting unit that can be controlled by a control unit using these guides in the adjuster, wherein the setting unit is for adjusting an angle of a camshaft. This setting unit has an inner body coupled to the camshaft so as to rotate with it, and an outer body that is mounted to rotate relative to the camshaft via a drive connection which runs from a crankshaft to the camshaft. The camshaft has at least one insert part permanently inserted camshaft wherein these two components together form at least one hydraulic medium guide at least in partial regions over its axial length. This design is to create a camshaft adjuster which is in interaction with a camshaft having an insert part so that there is a simple and reliable supply of hydraulic medium to the camshaft adjuster and in particular to its control device.
Abstract:
A valve system is provided to eliminate a play at connection portions in a valve characteristic varying mechanism and to enhance the accuracy in control of valve operation characteristics.
Abstract:
A variable timing camshaft drive assembly for an internal combustion engine utilizes a single cam phaser, driven by an engine crankshaft, capable of operating multiple camshafts carried on multiple banks of an engine. The cam phaser is carried on a hub extending from a mounting member attached to an engine block. The cam phaser includes an input sprocket and an output sprocket separated by a phasing device capable of altering the phase angle of the sprockets relative to one another. A first timing chain connects a drive sprocket of the crankshaft with the input sprocket of the cam phaser and a second timing chain connects the output sprocket of the cam phaser with the driven sprockets of the camshafts. As the phasing device alters the phase angle between the input and output sprockets, the phase angle between the camshafts and the crankshafts is altered.
Abstract:
A variable camshaft timing phaser for an internal combustion engine having at least one camshaft comprising a plurality of vanes in chambers defined by a housing and a spool valve. The vanes define an advance and retard chamber. At least one of the vanes is cam torque actuated (CTA) and at least one of the other vanes is oil pressure actuated (OPA). The spool valve is coupled to the advance and retard chamber defined by the CTA vane and the advance chamber defined by the OPA vane. When the phaser is in the advance position, fluid is routed from the retard chamber defined by the OPA vane to the retard chamber defined the CTA vane. When the phaser is in the retard position fluid is routed from the retard chamber defined by the CTA vane to the advance chamber defined by the CTA vane.
Abstract:
A control valve (18) for a device (1) to modify the timing of an internal combustion engine is provided. Here, a controlled rotation of the camshaft in reference to the crankshaft can be achieved via a hydraulic adjustment drive. A control valve (18) with operative connectors (A, B), a hydraulic connector (P), and at least one reservoir connector (T, T1, T2) controls the inflow of hydraulic fluid into and/or the outflow of hydraulic fluid out of the hydraulic adjustment drive. A filter (46) is arranged between the hydraulic connector (P) and the operative connectors (A, B).
Abstract:
A substantially V-shaped cylinder block is provided with a chain arrangement for transmitting the rotation of a crankshaft to camshafts, a chain cover for covering the chain arrangement at the front side of the cylinder block, and a mounting bracket fixed to a mounting portion disposed at the top of an engine bank of the cylinder block and to a mounting portion disposed at an outer side of a cylinder bank of the cylinder block.
Abstract:
In a camshaft adjustment control device for an internal combustion engine arranged in the drive train for a camshaft, with an inner body connected to the camshaft and an outer body rotatable relative to the inner body, and a control space between the inner and the outer bodies to which hydraulic fluid can be supplied for adjusting the relative angular positions of the inner body connected to the camshaft and the outer body driven by the crankshaft, the inner body is mounted to the camshaft by a bolt having a central bore in which a control spool valve is disposed controlling the flow of fluid to and from the control space and a check valve is arranged in the supply lines of the hydraulic fluid to the control spool valve which check valve opens when a certain pressure is applied thereto.
Abstract:
A variable valve timing control system of an internal combustion engine includes a hydraulically-operated phase converter disposed between a sprocket and a camshaft, and having a phase-advance hydraulic chamber and a phase-retard hydraulic chamber for changing an angular phase of the camshaft relative to the sprocket. An electric pump is provided to supply working fluid selectively to one of the hydraulic chambers via a directional control valve. Also provided is a check valve disposed in a discharge line of the pump for permitting flow in a direction that the working fluid flows from the pump to the directional control valve and preventing any flow in the opposite direction, so as to prevent a pulse pressure arising from alternating torque exerted on the camshaft from being transmitted from either one of the hydraulic chambers via the discharge line to a discharge port of the pump.