Abstract:
An engine valve train has oil flow to valve actuating components cut off or restricted when the valves are closed, to reduce parasitic losses. In an exemplary embodiment, a pushrod has a pivotable connection with a valve actuating rocker arm through which internal oil passages conduct oil for lubricating the rocker arm. The passages are aligned during valve actuation but become misaligned when the valve is closed. Misalignment of the passages at the sliding connection reduces the amount of oil flow through the connection to improve engine efficiency. When applied to cylinder deactivation engines, oil flow to rocker arms of deactivated valves is completely cut off, or reduced, further reducing parasitic losses.
Abstract:
The present invention relates to a method for fabricating a roller follower assembly, comprising the steps of fabricating a lash adjuster body, fabricating a roller follower body, fabricating a leakdown plunger, fabricating a socket, wherein at least one of the lash adjuster body, roller follower body, leakdown plunger, and socket is fabricated at least in part by forging.
Abstract:
A deactivation valve lifter includes a lifter body. The body defines at least one annular pin chamber therein. The lifter body has a first end configured for engaging a cam of an engine. A pin housing includes a pin housing wall and pin housing bottom. The pin housing wall includes an outer surface. The pin housing bottom defines a radially directed pin bore. The pin housing is concentrically disposed within the lifter body such that the outer surface of the pin housing wall is adjacent to at least a portion of an inner wall of the lifter body. A deactivation pin assembly is disposed within the pin bore and includes pin members. A portion of each pin member is disposed within the annular pin chamber to thereby couple the lifter body to the pin housing. An external lost motion spring is coupled to the body and pin housing.
Abstract:
The present invention relates to a valve lifter body, comprising an outer surface, enclosing a first cavity and a second cavity, wherein the first cavity includes a first inner surface configured to house a cylindrical insert, the second cavity includes a second inner surface cylindrically shaped, and at least one of the cavities is fabricated through forging.
Abstract:
An air fuel injection engine including an injector composed of a fuel injection valve for injecting fuel and an air fuel injection valve for directly injecting fuel together with compressed air into a combustion chamber and an injector housing for holding and securing the injector to an engine body. The injector is supported on a head cover, and at least part of a compressed air supply passage for supplying compressed air to the injector is provided directly in the head cover. Further, an injector housing is formed integrally with a head cover which forms part of an engine body. With this configuration, the scale of the engine, the complication of the structure around the engine, and the number of part required can be kept to a minimum.
Abstract:
A valve train is disclosed for an internal combustion engine having a block, a camshaft in the block, and at least two push rods actuated by the camshaft. The valve train comprises first and second rockers, and three valves. The first rocker is actuated by one of the push rods, and the second rocker is actuated by another of the push rods. A first valve is associated with a cylinder of the engine and actuated by the first rocker. A second valve is associated with the cylinder and actuated by the first rocker, and a third valve is associated with the cylinder and actuated by the second rocker.
Abstract:
A roller rocker mounting mechanism for an internal combustion engine valve actuating mechanism includes a first rocker stand having a first locating boss and a second rocker stand having a second locating boss. An indexing link has a first portion separably attachable to the first locating boss and a second portion separably attachable to the second locating boss to connect the first rocker stand and the second rocker stand in a manner that prevents rotation of either rocker stand when the rocker stands are attached to the cylinder head.
Abstract:
A deactivation hydraulic valve lifter includes an elongate lifter body having a substantially cylindrical inner wall. The inner wall defines at least one annular pin chamber therein. The lifter body has a first end configured for engaging a cam of an engine. An elongate pin housing includes a substantially cylindrical pin housing wall and pin housing bottom. The pin housing wall includes an inner surface and an outer surface. The pin housing bottom defines a radially directed pin bore therethrough. The pin housing is concentrically disposed within the inner wall of the lifter body such that the outer surface of the pin housing wall is adjacent to at least a portion of the inner wall of the lifter body. A deactivation pin assembly is disposed within the pin bore and includes two pin members. The pin members are biased radially outward relative to each other. A portion of each pin member is disposed within the annular pin chamber to thereby couple the lifter body to the pin housing. The pin members are configured for moving toward each other when the pin chamber is pressurized, thereby retracting the pin members from within the annular pin chamber and decoupling the lifter body from the pin housing.
Abstract:
In a switching element (1) for a valve train of an internal combustion engine for switching to different valve lifts, said switching element (1) comprising an outer element (2) having an inner element (4) arranged for axial displacement therein, each of the outer and the inner element (2, 4) comprising a reception (11, 9) aligned to each other in a relative position, at least one piston (10) being arranged in at least one of the receptions (11, 9) for sliding toward the other of the receptions (9, 11) to couple the inner element (4) to the outer element (2) in said relative position, and a high-position stop for defining said relative position being arranged between the inner and the outer element (4, 2), at least one part of the high-position stop is configured as an adjustable, separate element (13). This element (13) cooperates through a preferably conical section (15) of its outer periphery with a complementary chamfer (18) on one end (17) of a guide (16) in the outer element (2). By these extremely simple fabrication measures, an aligned adjustment of the receptions (9, 11) is created for effecting coupling.
Abstract:
An internal combustion engine tapered push rod assembly construction is disclosed, as well as a novel method of partially making the assembly elongated body section component from tubular push rod feedstock by removing excess exterior feedstock to form the body section exterior taper rather than by known conventional radial compression of feedstock exterior material that otherwise results in an unwanted feedstock reduced internal diameter, and an unwanted increased body section wall thickness configuration.