Abstract:
A municipal or like refuse is crushing, mixing with crushed limestone, dry up in two stages—by hot air and by part of solid products of pyrolysis which other part goes on washing out and filtration. Pyrolysis is carried out in two stages—due to heat of the specified part of solid products of pyrolysis and simultaneous neutralization of allocated hydrogen chloride by limestone with reception of calcium chloride, and then due to heat of final chimney gases of the combustion chamber, where in three stages the washed solid products of pyrolysis preliminary drained by a part of combustion chamber slag are burnt together with liquid and gaseous products of pyrolysis. Gas allocated at pyrolysis condense and divide on organic, which is liquid fuel and water phases. Air after a dryer moves to blowing away of light organic substances from the specified water phase, is heated up due to heat of slag and moves in combustion chamber. Washing water goes on allocation of salts of heavy metals and calcium chloride, and slag after molding of a concrete mixture goes to the chamber of thermohumid processing of the slag concrete by a part of damp chimney gases after drying calcium chloride, other part of gases moves to manufacture of liquid carbon dioxide.
Abstract:
A method is provided for heavy metal stabilisation comprising: mixing waste, comprising heavy metals, with molecular sieve with the proviso that carbon-based molecular sieve is excluded, and clay; and vitrifying the mixture. In particular, a method comprising the steps of: preparing a pre-stabilised mixture by mixing waste, comprising heavy metals, with the molecular sieve, and optionally other chemicals; mixing the pre-stabilised mixture with clay; and vitrifying the obtained mixture is provided. It also provides a product comprising heavy metals that have been stabilised into the structure of the clay-based ceramic matrix, wherein the product is a vitrified product of a mixture of at least waste, comprising heavy metals, molecular sieve (with the proviso that carbon-based molecular sieve is excluded) and clay.
Abstract:
One or more auxiliary plasma torches are provided to a waste processing plant at strategic locations within the chamber and directed towards the waste column. When a bridge forms within the chamber the auxiliary plasma torches may be operated such as to provide an additional heat source where needed, quickly heating the organic solids, which thus pass through the bituminsation and charcoal formation stages quickly. The additional heat source may be in the neighborhood of the bridge, but may also be near the bottom end of the chamber, in which case the additional temperature at the bottom of the chamber effectively moves the combustion and gasification zones for the charcoal to a higher part of the chamber, altering the temperature profile. The heat source also enables the inorganic wastes to be heated rapidly to pass beyond the melting stage relatively quickly. The debridging process may be further enhanced by providing secondary plasma torches at various levels upwards of the primary torches, the secondary torches at any level being operated as and when needed to achieve the desired effect.
Abstract:
One or more auxiliary plasma torches are provided to a waste processing plant at strategic locations within the chamber and directed towards the waste column. When a bridge forms within the chamber the auxiliary plasma torches may be operated such as to provide an additional heat source where needed, quickly heating the organic solids, which thus pass through the bituminsation and charcoal formation stages quickly. The additional heat source may be in the neighborhood of the bridge, but may also be near the bottom end of the chamber, in which case the additional temperature at the bottom of the chamber effectively moves the combustion and gasification zones for the charcoal to a higher part of the chamber, altering the temperature profile. The heat source also enables the inorganic wastes to be heated rapidly to pass beyond the melting stage relatively quickly. The debridging process may be further enhanced by providing secondary plasma torches at various levels upwards of the primary torches, the secondary torches at any level being operated as and when needed to achieve the desired effect.
Abstract:
The present invention provides a method of purifying polluted soil and/or burned ash containing heavy metals and/or organic compounds with a higher throughput than a conventional method. In this method, polluted soil and/or burned ash is dried by, for example, a rotary dryer so that the moisture content is 5% by mass or less, preferably 3% by mass or less, and then large lumps having a particle diameter of 10 mm or more are removed by a vibrating screen. Only an undersize portion is formed into a briquette having a volume of about 6 cm3 by a press molding machine. The briquette is charged in a rotary hearth furnace together with the large lumps, and heated in the furnace to remove or detoxify the heavy metals and organic compounds by evaporation with high efficiency.
Abstract:
The present invention relates to a method and to a device intended for spontaneous combustion of a fuel comprising organic, vegetable or mineral materials, the device comprising a combustion chamber, at least one fuel injection means, at least one air inlet, hot fumes discharge means. Chamber (1) comprises a cylindrical shell (11), the discharge means comprise a pipe (6) having the same axis as the chamber and arranged inside said chamber, and fuel injection means (7) is arranged substantially tangential to said cylindrical shell so that the fuel follows a circular motion around said pipe in the chamber.
Abstract:
Processes and systems are provided that include introducing ammonia liberated from organic waste to a coal burner in a coal burning power plant, preferably for NOx removal at the power plant. The ammonia is preferably either ammonia liberated upon drying a mixture of organic waste and coal combustion by-products or ammonia liberated when organic waste is mixed with coal combustion by-products and one or more alkaline additives. Also provided are processes and systems of fueling a coal burner of a power plant with coal and either a dried mixture of organic waste and coal combustion by-products, or a mixture of organic waste, coal combustion by-products and one or more alkaline additives. The present invention is further directed to mixtures of either organic waste and coal combustion by-products, or mixtures of organic waste, coal combustion by-products and alkaline additives made by the processes of the present invention.
Abstract:
An apparatus for treating organic waste material characterized by high ash content is disclosed. The apparatus includes a slagging combustor for burning the organic waste material to produce a slag of molten inorganic ash and exhaust gases, a cooler for receiving the exhaust gases from the combustor and cooling the exhaust gases, a condenser for receiving cooled exhaust gases from the cooler and drying the cooled exhaust gases, an exhaust gas recirculation conduit for receiving a first portion of cooled and dried exhaust gases from the condenser, and a source of concentrated oxygen gas in fluid communication with the exhaust gas recirculation conduit for adding concentrated oxygen gas to the first portion of cooled and dried exhaust gases to create a gas mixture that is added to the combustor through the exhaust gas recirculation conduit, wherein the source of concentrated oxygen gas includes a valve responsive to an oxygen sensor in the exhaust gas recirculation conduit for regulating the flow of concentrated oxygen gas into the exhaust gas recirculation conduit.
Abstract:
A process is disclosed for recovering raw materials, in particular heavy metals such as chromium, zinc, copper, lead, or nickel, by separation from waste and residues, wherein a liquid or viscous starting mixture and/or a starting mixture composed of crushed or ground components is first prepared. The invention is characterized in that the raw materials are separated by a thermochemical treatment. The liquid, viscous and/or solid starting mixture is first mixed with additives, depending on its composition, then subjected to a thermal treatment in an oven. The atmosphere in the oven flows through the starting mixture and the suspended materials thus generated as flakes or dust are conveyed out of the oven through a filter installation with several stages in which they are separated from the waste gas. The first filter is designed as a hot filter, after which the waste gas is cooled and after flowing through at least a second filter, pre-heated and then burnt at a high temperature. The process of the invention may be used, for example, to recover chromium (III) oxide from chromium-containing residues or zinc oxide from zinc-containing residues. Formation of chromium (III) oxide from chlorine-containing wastes occurs by formation and decomposition of chromyl chloride. Additives suitable for use in the invention may include those that comprise aluminum, aluminum oxide, iron, iron oxide, chlorine-containing material, sulfur-containing, milled plastics, granulated plastics, peroxides, silicon oxide, magnesium oxide or combinations thereof.
Abstract:
By using a gasification and melting furnace for wastes having a vertically movable furnace center lance disposed along the axis of the furnace and adapted to blow off a combustion sustaining gas downward into the furnace, one or more stages of upper tuyeres disposed so that the angle at which the combustion sustaining gas is blown off into the furnace is displaced from the furnace axis direction, and one or more stages of lower tuyeres projected into the furnace so as to blow off a combustion sustaining gas or both combustion sustaining gas and fuel toward the furnace axis, it is possible to prevent the formation of a low temperature region in the furnace and concentrate a fire spot for the combustion of wastes. As a result, molten slag and various metals, as well as an energy gas, which are high in added value, can be recovered stably. Further, if the ratio of the diameter, df, of a fire spot formed by the furnace center lance to the inside diameter, D, of the furnace is controlled to df/Dnull0.6 by vertical movements of the furnace center lance, it becomes possible to further concentrate the fire spot which is for the combustion of wastes. As a result, molten slag and various metals, as well as an energy gas, which are high in added value, can be recovered in a still more stable manner.