Abstract:
A light-emitting element display device includes: a display area which has an organic insulating layer that is made of an organic insulating material; a peripheral circuit area which is disposed around the display area and which has the organic insulating layer; and a blocking area that is formed between the display area and the peripheral circuit area. The blocking area includes: a first blocking area configured by only one or a plurality of inorganic material layers between an insulating base substrate and an electrode layer which covers the display area and is formed continuously from the display area, and which configures one of two electrodes for allowing the light emitting area to emit the light; and a second blocking area including a plurality of layers configuring the first blocking area, and a light emitting organic layer.
Abstract:
The present invention addresses a display unevenness in a corner of a display in an IPS liquid crystal display device. A liquid crystal display device includes: a TFT substrate including pixels formed between scanning lines extending in a first direction and arrayed in a second direction and image signal lines extending in the second direction and arrayed in the first direction, each pixel including a TFT; a counter substrate; and a liquid crystal layer between the TFT substrate and the counter substrate, wherein a common electrode is formed above the image signal line via an insulating film, the scanning line and the end portion of the common electrode do not overlap each other as seen from the above, and they have a space d1 in the first direction.
Abstract:
The disclosure provides a liquid crystal display panel, an array substrate and a manufacturing method thereof. In the method, controllable resistance spacer layers are formed on at least one of a source doped region and a drain doped region of a low temperature polysilicon active layer, wherein when a turn-on signal is not applied to the gate layer, the controllable resistance spacer layers serve as a blocking action for a flowing current, and when the turn-on signal is applied to the gate layer, the controllable resistance spacer layers serve as a conducting action for the flowing current, such that a contact region formed of the controllable resistance spacer layers is connected the corresponding source layer and the corresponding drain through the controllable resistance spacer layers. Therefore, the disclosure is capable of effectively decreasing a leakage of a thin film transistor.
Abstract:
An electrochromic device and method, the device including: a first transparent conductor layer; a working electrode disposed on the first transparent conductor layer and including nanostructures; a counter electrode; a solid state electrolyte layer disposed between the counter electrode and the working electrode; and a second transparent conductor layer disposed on the counter electrode. The nanostructures may include transition metal oxide nanoparticles and/or nanocrystals configured to tune the color of the device by selectively modulating the transmittance of near-infrared (NIR) and visible radiation as a function of an applied voltage to the device.
Abstract:
A light-emitting element display device includes: a display area which has an organic insulating layer that is made of an organic insulating material; a peripheral circuit area which is disposed around the display area and which has the organic insulating layer; and a blocking area that is formed between the display area and the peripheral circuit area. The blocking area includes: a first blocking area configured by only one or a plurality of inorganic material layers between an insulating base substrate and an electrode layer which covers the display area and is formed continuously from the display area, and which configures one of two electrodes for allowing the light emitting area to emit the light; and a second blocking area including a plurality of layers configuring the first blocking area, and a light emitting organic layer.
Abstract:
An electronic device includes a display for rendering content. The display may include a protective sheet that is located between an image-displaying component and a liquid optically clear adhesive (LOCA) that adheres another component layered atop the display, such as a front light, a touch sensor or a cover layer. In some cases, the protective sheet may be a polymer sheet coated with a layer of ceramic material that prevents migration of a reactive species, such as a photoinitiator, between the protective sheet and the LOCA. Alternatively, a plasma treatment, a UV-light-ozone treatment, or a thermal treatment may be applied to the protective sheet to remove material including the reactive species and/or form a barrier layer to prevent migration of the reactive species. Still alternatively, the protective sheet may be a thin flexible glass sheet that does not include constituents that interact with the LOCA.
Abstract:
A display substrate and a display device including the display substrate are provided. The display substrate includes an alignment mark in an alignment region of the display substrate; and a blocking structure in a preset region around the alignment mark, wherein the blocking structure is arranged to block residual particles carried by a rubbing roller during rubbing.
Abstract:
The present invention provides a touch control display device comprising an array substrate, a counter substrate arranged opposite to the array substrate, and a liquid crystal layer and a touch control layer located between the array substrate and the counter substrate, the counter substrate comprising an alkali glass base substrate. A first shield layer for preventing diffusion of alkali metal ions is formed at a side of the alkali glass base substrate of the counter substrate facing the array substrate, and the liquid crystal layer and the touch control layer are both located between the array substrate and the first shield layer. In the present invention, by forming a first shield layer for preventing diffusion of alkali metal ions at a side of the alkali glass base substrate of the counter substrate facing the array substrate, the alkali metal ions are blocked so that they can not diffuse into other layers of the substrate, so as to ensure physical and chemical stability of the transparent electrode and the liquid crystal in the display device and ensure display effect of the display device.
Abstract:
An active matrix substrate (1) includes a source electrode (32), a drain electrode (33), and a semiconductor layer (31) of oxide semiconductor. A gate insulating layer (42) of silicon oxide is formed on the gate electrode (12a); a source electrode (32), a drain electrode (33), and a semiconductor layer (31) are formed on the gate insulating layer (42); a first protection layer (44) of silicon nitride is formed on the gate insulating layer (42) without covering the semiconductor layer (31); and a second protection layer (46) of silicon oxide is formed on the semiconductor layer (31). The first protection layer (44) covers the signal line (14) and the source connection line (36).
Abstract:
A TFT 1 is formed on a glass substrate 11, and a flattening resin film 17 covering the TFT 1 is formed. Furthermore, a moisture-proof protective film 18 covering the entire surface of the flattening resin film 17 is formed. For the protective film 18, a SiO2 film, a SiN film, a SiON film, or a stacked film thereof is used. The edge surfaces of the flattening resin film 17 are disposed on the inner side of or under a seal 4, and are formed in a tapered shape. By this, the entry of moisture into the flattening resin film 17 is prevented, preventing display degradation. This effect becomes noticeable in a display device including an oxide semiconductor TFT.