Abstract:
A method of making a circuitized substrate including a composite layer having a first dielectric sub-layer including a halogen-free resin and fibers dispersed therein and a second dielectric sub-layer without fibers but also including a halogen-free resin with inorganic particulates therein.
Abstract:
Provided is a functional fiber and a fiber aggregate for realizing various functions, an adhesive for easily bonding electronic components, and a method for manufacturing the same. Particularly, a fiber extended in a length direction includes a carrier polymer and a plurality of functional particles, wherein the plurality of functional particles are embedded in the carrier polymer and physically fixed to the carrier polymer to be integrated.
Abstract:
A heat-conductive dielectric polymer material includes a thermosetting epoxy resin, a nonwoven fiber component, a curing agent and a heat-conductive filler. The thermosetting epoxy resin is selected from the group consisting of end-epoxy-function group epoxy resin, side chain epoxy function group epoxy resin, multi-functional epoxy resin or the mixture thereof. The thermosetting epoxy resin comprises 4%-60% by volume of the heat-conductive dielectric polymer material. The curing agent is configured to cure the thermosetting epoxy resin at a curing temperature. The heat-conductive filler comprises 40%-70% by volume of the heat-conductive dielectric polymer material. The nonwoven fiber component comprises 1%-35% by volume of the heat-conductive dielectric polymer material. The heat-conductive dielectric polymer material has a thermal conductivity greater than 0.5 W/mK.
Abstract:
Disclosed is a printed wiring board which attains aims of printed wiring boards required for realizing high-speed, high-frequency semiconductor devices, namely a printed wiring board having low dielectric constant, low dielectric loss tangent and low linear expansion coefficient. Also disclosed is a composite woven fabric suitably used as a base material for such a printed wiring board. Specifically disclosed is a composite woven fabric containing quartz glass fibers and polyolefin fibers, in which the ratio of the quartz glass fibers to the composite woven fabric is set at 10 vol % or more and 90 vol % or less. It is preferred that the quartz glass fibers each have a filament diameter of 3 μm or more and 16 μm or less, and the composite woven fabric has a thickness of 200 μm or less.
Abstract:
Polymer brushes (50) in a resin that create phonon pathways therein. The polymer brushes themselves comprise structured polymer hairs having a density of 0.8 to 1.0 g/cc, a chain length of 1 to 1000 nm, and a thermal conductivity of 0.5 to 5.0 W/mK. The polymer brushes are 10-25% by volume of the resin, and the polymer hairs can orient surrounding resin molecules to the polymer hairs alignment (55).
Abstract:
Provided is a functional fiber and a fiber aggregate for realizing various functions, an adhesive for easily bonding electronic components, and a method for manufacturing the same. Particularly, a fiber extended in a length direction includes a carrier polymer and a plurality of functional particles, wherein the plurality of functional particles are embedded in the carrier polymer and physically fixed to the carrier polymer to be integrated.
Abstract:
A multilayered circuitized substrate including a plurality of dielectric layers each comprised of a p-aramid paper impregnated with a halogen-free, low moisture absorptivity resin including an inorganic filler but not including continuous or semi-continuous fiberglass fibers as part thereof, and a first circuitized layer positioned on a first of the dielectric layers. A method of making this substrate is also provided.
Abstract:
Prepregs, laminates, printed wiring board structures and processes for constructing materials and printed wiring boards that enable the construction of printed wiring boards with improved thermal properties. In one embodiment, the prepregs include substrates impregnated with electrically and thermally conductive resins. In other embodiments, the prepregs have substrate materials that include carbon. In other embodiments, the prepregs include substrates impregnated with thermally conductive resins. In other embodiments, the printed wiring board structures include electrically and thermally conductive laminates that can act as ground and/or power planes.