Abstract:
A method for manufacturing a printed wiring board includes fixing a lower metal foil on a support plate, forming a lower insulating layer on the lower metal foil, laminating a core metal layer on the lower insulating layer, patterning the core metal layer such that the core metal layer is formed into a core conductive layer, forming an upper insulating layer on the core conductive layer and lower insulating layer, laminating an upper metal foil on the upper insulating layer, removing the plate from the lower foil such that a core substrate including the lower metal foil, lower insulating layer, core conductive layer, upper insulating layer and upper metal foil is formed, and forming on the core substrate a buildup layer including an insulating layer and a conductive layer. The core metal layer has a thickness which is set to be greater than thicknesses of the lower and upper foils.
Abstract:
An electronic device comprising an electrically conductive core layer with a first layer composed of electrically conductive material, the first layer being applied on both sides and with at least one electronic component arranged in a cutout of the first layer, wherein the first layer is covered in each case with an electrically insulating, thermally conductive layer and a further layer composed of electrically conductive material is provided in each case on the thermally conductive layer, the further layer being coated in each case with a covering layer composed of electrically conductive material, and furthermore having plated-through boles composed of the material of the covering layer, which extend through the electrically insulating, thermally conductive layer covering the electronic component and the further layer composed of electrically and thermally conductive material for the purpose of making contact with the electronic component.
Abstract:
A printed circuit board includes a first layer stack and a second layer stack coupled to the first layer stack. The first layer stack includes a first electrically-insulating layer, a first electrically-conductive layer, and a cut-out area defining a void that extends therethrough. The first electrically-insulating layer includes a first surface and an opposite second surface. The first electrically-conductive layer is disposed on the first surface of the first electrically-insulating layer. The second layer stack includes a second electrically-insulating layer. The second electrically-insulating layer includes a first surface and an opposite second surface. One or more electrically-conductive traces are disposed on the first surface of the second electrically-insulating layer. The printed circuit board further includes a device at least partially disposed within the cut-out area. The device is electrically-coupled to one or more of the one or more electrically-conductive traces disposed on the first surface of the second electrically-insulating layer.
Abstract:
A circuit substrate has one or more active components and a plurality of passive circuit elements on a first surface. An active semiconductor device has a substrate with layers of material and a plurality of terminals. The active semiconductor device is flip-chip mounted on the circuit substrate and at least one of the terminals of the device is electrically connected to an active component on the circuit substrate. The active components on the substrate and the flip-chip mounted active semiconductor device, in combination with passive circuit elements, form preamplifiers and an output amplifier respectively. In a power switching configuration, the circuit substrate has logic control circuits on a first surface. A semiconductor transistor flip-chip mounted on the circuit substrate is electrically connected to the control circuits on the first surface to thereby control the on and off switching of the flip-chip mounted device.
Abstract:
There is provided a circuit board module and a method of manufacturing the same. The circuit board module may include: a circuit board; a resistor arranged on the circuit board; pads covering both edges of the resistor; adhesive portions provided at least on the pads and formed of an electrically insulating material; and a heat dissipation member provided on the resistor and bonded to the pads using the adhesive portions.The adhesive portions are selectively formed, thereby preventing short circuits occurring between the resistor mounted onto the circuit board and the heat dissipation member. Accordingly, the reliability of components can be increased.Furthermore, an adhesive material used to connect the board and the heat dissipation member is formed of a thermally conductive material, thereby increasing heat dissipation efficiency.
Abstract:
Thermal management is provided for a device. The device may include a substrate having a mounting area on a first surface of the substrate. The device may also include first thermal vias extending from the mounting area to at least an interior of the substrate. The device may also include at least one thermal plane substantially parallel to the first surface of the substrate, the at least one thermal plane being in thermal contact with at least one of the first thermal vias. The device may also include a heat sink attachment area, and second thermal vias extending from the heat sink attachment area to the interior of the substrate, the at least one thermal plane being in thermal contact with the second thermal vias.
Abstract:
According to various aspects of the present disclosure, an apparatus is disclosed that includes a small form factor mobile platform including a system-on-package architecture, the system-on-package architecture arranged as a stack of layers including a first layer having a first conformable material; a second layer having a second conformable material; one or more electronic components embedded within the stack of layers; and a vertical filtering structure arranged periodically between the one or more electronic components, wherein the first conformable material, the second conformable material, or both are configured to allow high frequency signal routing.
Abstract:
A device is disclosed for producing light that may include one or more printed circuit boards (PCBs), an electronics package may be disposed about a first surface of one or more of the PCBs and a housing. A plurality of PCB's may be set apart and connected by pins to dissipate heat from one PCB to another, and/or to convey electrical connectivity. Pins may be configured to pass through or into one or both the PCBs including the cores to conduct heat generated by the electronics package away for dispersion. In some embodiments, the pins may pass into the backplane. The PCBs may include LEDs, lights, computer devices, memories, telecommunications devices, or combinations of these. The device may also include a housing to contain the plurality of PCBs such that air flow may enter the housing and pass by the pins for cooling of the PCBs and electronics thereof.
Abstract:
An LED heat-conducting substrate and its thermal module wherein the composite heat-conducting substrate is incorporated by multiple heat-conducting wires or fibers and insulating material. Said wires or fibers are arranged at interval, and penetrate the front and rear faces. The wires or fibers are segregated by insulating material. An electrode pad is incorporated onto the front face of the composite heat-conducting substrate, and is electrically connected with the electrode pin of LED unit. A heat-conducting pad is incorporated and kept in contact with the heat sink of the LED component for heat conduction. An insulating layer is incorporated onto the rear face of the composite heat-conducting substrate, and located correspondingly to the electrode pad. The LED heat-conducting substrate and thermal module can be constructed easily for high heat conduction in the thickness direction and high electrical insulation in the direction of plane, enabling quick heat transfer to the heat-sinking component.
Abstract:
An automotive power converter may include a cold plate, a printed circuit board spaced away from the cold plate and including at least one heat generating electrical component attached thereto, and another printed circuit board disposed between the cold plate and the printed circuit board spaced away from the cold plate. The converter may further include at least one thermally conductive element configured to provide a thermally conductive path from the at least one heat generating electrical component to the cold plate. The at least one thermally conductive element may pass through the printed circuit boards.