Abstract:
The present invention relates to a polycrystalline diamond and a polycrystalline diamond compact comprising a continuous network of interbonded diamond constituents comprising nanostructured polycrystalline diamond particles and catalyst material located at the interstitial space among the diamond constituents, and method of making the same. The nanostructured polycrystalline diamond particles are from starting raw materials of Carbonado-type nanostructured polycrystalline diamond particles with a size of between 1 μm-40 μm. The diamond constituents may comprise micrometer-scale monocrystalline diamond particles. The catalyst material in the polycrystalline diamond or the polycrystalline diamond compact may be removed partially or completely by a leaching process. The method of making the polycrystalline diamond or the polycrystalline diamond compact comprises sintering diamond particles comprising the Carbonado-type nanostructured polycrystalline diamond particles with a size of between 1 μm-40 μm under high temperature and high pressure in the presence of the catalyst material.
Abstract:
A method of dispersing graphene and graphitic nanomaterials uses a multiphase fluid dynamic technique. The method includes a device, incorporating a high intensity fluid dynamics technique, controlling the expansion and compression ratio of the working stream that leads to an effective dispersion of the nanomaterial in the matrix. The condensation of the injected steam creates high intensity and controllable cavitation, leading to effective dispersion of the graphitic nanomaterial. The dispersion is most preferably done in a medium that creates a repulsive potential to balance the attractive inter-graphitic layer potential.
Abstract:
An apparatus for generating a pressure wave in a liquid medium is disclosed. The apparatus includes a plurality of pressure wave generators having respective moveable pistons, the pistons having respective control rods connected thereto. The apparatus also includes a plurality of transducers coupled to the liquid medium and means for causing the pistons of respective ones of the plurality of the pressure wave generators to be accelerated toward respective ones of the plurality of transducers. The apparatus further includes means for causing restraining forces to be applied to respective control rods to cause respective pistons to impact respective transducers at respective desired times and with respective desired amounts of kinetic energy such that the respective desired amounts of kinetic energy are converted into a pressure wave in the liquid medium.
Abstract:
A method of producing graphene sheets and plates from graphitic material including (a) mixing graphitic material particles in a liquid medium to form a suspension; (b) compressing the suspension; (c) directing the compressed suspension through a local constriction into an area of reduced pressure to decompress the suspension in less than 2×10−6 second to a pressure less than 20% of the compression pressure, thereby exfoliating graphene sheets and plates from the graphitic material.
Abstract:
Systems and methods for producing a dense, well bonded solid material from a powder may include consolidating the powder utilizing any suitable consolidation method, such as explosive shockwave consolidation. The systems and methods may also include a post-processing thermal treatment that exploits a mismatch between the coefficients of thermal expansion between the consolidated material and the container. Due to the mismatch in the coefficients, internal pressure on the consolidated material during the heat treatment may be increased.
Abstract:
A method for producing a carbon particle by a detonation method includes two steps. The first step is a step of disposing an explosive substance in the periphery of a raw material substance. The explosive substance has a detonation velocity of 6,300 m/s or more. The raw material substance contains an aromatic compound having not more than 2 nitro groups. The second step is a step of allowing the explosive substance to detonate.
Abstract:
Methods and systems are provided for converting methane in a feed stream to acetylene. The method includes processing the acetylene to form a hydrocarbon stream having vinyl chloride. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream is be treated to convert acetylene to other hydrocarbon processes. The method according to certain aspects includes controlling the level of carbon monoxide in the hydrocarbon stream to limit downstream side reactions in the downstream processing units.
Abstract:
The present invention relates to the field of manufacturing nanoparticles, and specifically to a method for manufacturing diamond nanoparticles, or nanodiamonds, by detonation at least one explosive charge, wherein said at least one explosive charge is nanostructured.
Abstract:
The present invention relates to a process for the production of carbon nanotubes by decomposition of hydrocarbons on a heterogeneous catalyst in a fluidized bed reactor, wherein the reactor can be operated batchwise or continuously, and in the case of continuous operation discharge can take place with sifting or without sifting.
Abstract:
Examples of a pressure wave generator configured to generate high energy pressure waves in a medium are disclosed. The pressure wave generator can include a movable piston with a guide through which a piston control rod can move or slide. The pressure wave generator can include a transducer coupled to a medium. During an impact of the piston on the transducer, the control rod can slide in the guide, which can reduce stress on the rod. The pressure wave generator can include a damper to decelerate the control rod, independently of the piston. Impact of the piston on the transducer transfers a portion of the piston's kinetic energy into the medium thereby generating pressure waves in the medium. A piston driving system may be used to provide precise and controlled launching or movement of the piston. Examples of methods of operating the pressure wave generator are disclosed.