Abstract:
A method for producing a light oil fraction from plant-based and/or animal-based fats, oils or greases is disclosed. The method comprises introducing a feedstock including free fatty acids into a processing system. The system is heated at a controlled rate to a specified temperature, both of which are selected to produce a light oil fraction with a reduced fatty acid content. The system is permitted to reflux for a predetermined time, during which more of the light oil fraction is produced. The light oil fraction is separated from the remainder of the feedstock and contains less than 10% free fatty acids.
Abstract:
By blending a quantity of synthetic cyclo-paraffinic kerosene fuel blending component comprising at least 99.5 mass % of carbon and hydrogen content and at least 50 mass % of cyclo-paraffin into kerosene base fuel, kerosene based-propulsion fuels can be upgraded to higher quality kerosene based-propulsion fuels such as jet fuel or rocket fuel to meet certain specification and/or increase volumetric energy content of the propulsion fuel.
Abstract:
Provided are a method and a device with which carbon dioxide is used as a starting material to yield methanol, without requiring high-temperature high-pressure conditions or the addition of hydrogen, and fuel hydrocarbons such as gas oil or heavy oil are produced in a satisfactory yield. The method is a method for increasing the amount of a hydrocarbon oil, characterized by: mixing methanol with water into which air has been bubbled in the presence of a catalyst; mixing the resultant liquid mixture with the feed hydrocarbon oil to produce an emulsion; and contacting this emulsion with a gas or aqueous solution which contains carbon dioxide.
Abstract:
Modified Saccharomyces cerevisiae yeast that produce terminal alkenes are described. The modification of the Saccharomyces cerevisiae yeast includes insertion of at least one heterologous fatty acid decarboxylase gene, deletion of FAA1 and FAA4, overexpression of HEM3, and triple-deletion of CTT1, CTA1 and CCP1. Methods of producing terminal alkenes by culturing and fermenting the modified Saccharomyces cerevisiae yeast and optionally harvesting the terminal alkenes are also described. Mixtures of terminal alkenes produced by the modified Saccharomyces cerevisiae yeast, and methods of metabolically engineering a yeast for optimizing overexpression of one or more alkenes are also described.
Abstract:
The disclosure relates to fuel additive compositions including heavy paraffinic distillates and lighter petroleum distillates, in particular with the heavy paraffinic distillates including a mixture of hydrotreated and/or saturated components and solvent-dewaxed and/or branched components. The disclosure further relates to fuel compositions including the fuel additive composition and a liquid or solid combustible fuel. Related methods include methods of making the fuel compositions and methods of burning the fuel compositions. The resulting fuel compositions have several improved combustion properties such as improved combustion efficiency, improved combustion energy/calorie content, reduced sulfur generation, and reduced ash generation.
Abstract:
Disclosed herein are a method of preparing a hydrocarbon oil blend having superior storage stability using a novel stability prediction model that is quick, easy and reliable; and a method of predicting the stability of a hydrocarbon blend.
Abstract:
The present invention provides an unleaded, piston engine fuel formulation comprising a blend of mesitylene, pseudocumene and isopentane having a MON of at least 94 and an RVP of 38 to 49 kPa at 37.8° C. In certain aspects, the formulation comprises specific weight percentages of each of the mesitylene, pseudocumene and isopentane components, and varying MON ratings. In additional aspects, the formulations comprise a combination of mesitylene, isopentane, and one or more additional components selected from the group consisting of pseudocumene, toluene and xylenes. In certain embodiments, the formulations also include alkylates and or alkanes. The formulations have unusually high MON ratings, and desirable RVP and distillation curve characteristics for formulations not including additional components, particularly octane boosters.
Abstract:
A liquid fuel production method of the present invention includes: a saccharification step in which a biomass is saccharified; a methane fermentation step in which a saccharified liquid acquired in the saccharification step undergoes methane fermentation; and a biogas to liquid (BTL) step in which a liquid fuel is generated from a biogas acquired in the methane fermentation step.
Abstract:
The present invention relates to processes for producing industrial products such as hydrocarbon products from non-polar lipids in a vegetative plant part. Preferred industrial products include alkyl esters which may be blended with petroleum based fuels.
Abstract:
An enhanced Fischer-Tropsch process for the synthesis of sulfur free, clean burning, green hydrocarbon fuels, examples of which include syndiesel and aviation fuel. Naphtha is destroyed in a hydrogen generator and recycled as feedstock to a syngas (FT) reactor in order to enhance the production of syndiesel from the reactor. A further variation integrates a second hydrogen generator capturing light hydrocarbon gas for conversion to hydrogen and carbon monoxide which supplements the Fischer-Tropsch reactor. The result is a considerable increase in the volume of syndiesel formulated. A system for effecting the process is also characterized in the specification.