Abstract:
An entirely wearable electrical connector for power/data connectivity. The principal element of a modular network is the wearable electrical connector, which is integrated into a personal area network with USB compatibility. An embodiment comprises a non-conductive elastomeric environmental seal.
Abstract:
An integrated circuit structure includes a capacitor, which further includes a first capacitor plate formed of polysilicon, and a second capacitor plate substantially encircling the first capacitor plate. The first capacitor plate has a portion configured to vibrate in response to an acoustic wave. The second capacitor plate is fixed and has slanted edges facing the first capacitor plate.
Abstract:
The present invention provides a wireless communications system comprising a first radio transceiver configured to communicate on a first radio channel, a second radio transceiver configured to communicate on a second radio channel, a first base transceiver unit (BTU) configured to communicate with the first radio transceiver, a second BTU configured to communicate with the second radio transceiver, and a client transceiver unit (CTU) configured to communicate with both the first BTU and the second BTU. The CTU is thereby configured to communicate on the first radio channel via the first radio transceiver and the first BTU. The CTU is also configured to communicate on the second radio channel via the second radio transceiver and the second BTU. The CTU comprises at least one speaker for enabling a user to listen to communications on the first and second radio channels concurrently.
Abstract:
An entirely wearable electrical connector for power/data connectivity. The principal element of a modular network is the wearable electrical connector, which is integrated into a personal area network with USB compatibility. Several wearable connector embodiments are disclosed. The first, an O-ring based version, was subsequently replaced by a more mature second version, which is based on anisotropic pressure sensitive conductive elastomer. Both are snap-style, low-profile, 360°-moving, round, blind operable plug-and-play, reconfigurable wearable connectors with power/data daisy-lattice-style connectivity. A third embodiment comprises a non-conductive elastomeric environmental seal. A fourth embodiment utilizes a self-acting, automatic shutter-type environmental seal. A fifth embodiment comprises a smaller version that resembles a conventional snap fastener commonly used on clothing. The inventive technology will benefit the military and public safety personnel such as police, fire, EMT and other services that require special protective clothing integrated with multiple electronic devices. Other applications include special clothing for the disabled, prisoners, the mentally ill and children. A non-wearable embodiment is used to provide evidence of tampering of a container.
Abstract:
A method for changing a user A's contact list of an instant messenger system includes the user A transmitting a request to a user B, and adding the user B's contact list to the user A's contact list after the user B accepts the user A's request.
Abstract:
A method and system referred to as PALM (Patterning by Adhesive of Large Relief Three-Dimensional Microstructures) with large reliefs exceeding 1 μm and being as large as 100 μm. The microstructures can be either deterministic (such as microprisms), or random (such as diffusers), the first obtained by copying an original supermaster, and latter obtained by copying a laser speckle pattern. The master process entails copying a supermaster into the form of the microstructure constituting a pattern on the patterning cylinder (called a drum), to be then continuously multiplied in the PALM system, in a continuous roll-to-roll web process. The latter method, together with the related system, is the subject of this invention. The rolls continuously repeat the master pattern, copying by adhesive with large viscosity on acrylic (hybrid) as well as by a monolithic process. The monolithic process can be accomplished using temperature and pressure, or by UV-cured polymerization. Therefore, the invention comprises three alternative processes: one, hybrid (adhesive on acrylic), and two monolithic ones. In the PALM (hybrid) process, an epoxy is wet-coated on film substrates such as polycarbonate (PC), polyester (PET), (PE), or other flexible material. The adhesive, in liquid form, is applied to the substrate by a self-metered coating sub-process. In the present invention, the adhesive is used for forming the microstructure pattern. The microstructure pattern is replicated from a master roll or image drum onto a coating roll.
Abstract:
Hollow, cylindrical, seamless metal master for producing seamless diffuser sheets of preselected length and width. Additional aspects of the invention include a hollow cylindrical seamless invertable elastomeric master and method of making the same and an apparatus and process for effecting variable diffuser recording in photosensitive medium.
Abstract:
A pipe latch circuit for increasing data output speed, a semiconductor memory device with the pipe latch circuit and data output operation method of the same. The pipe latch circuit includes a selection signal generator and a pipe latch unit. The selection signal generator generates input selection signals in response to an input control signal and a first selection control signal. The pipe latch unit inverts pre-fetch data received in parallel through a plurality of GIO (Global Input and Output) lines into serial pipe output data in response to input selection signals, a second selection control signal and output control signals and then outputs them at an output node. The pipe latch unit includes an input selection unit for selectively changing a parallel order of pre-fetch data respectively received through a plurality of GIO lines in response to an input selection signals and then respectively outputting input selection data at a plurality of internal data lines in accordance with the change result. The pipe latch circuit has the advantage of increasing data output speed by reducing an output path of pre-fetch data delivered at GIO lines and thus reducing the change of voltage level of the pre-fetch data.
Abstract:
A method for forming a capacitor is provided. In an embodiment of the method, a lower electrode of the capacitor is formed on a semiconductor substrate. An insulating layer and a metal layer are sequentially deposited on the lower electrode of the capacitor, and a photoresist pattern is formed on the metal layer. The metal layer is etched using the photoresist pattern as a mask to form an upper electrode of the capacitor and to form a polymer layer on a sidewall of the upper electrode of the capacitor. Subsequently, the insulating layer is etched using the photoresist pattern as a mask to form an insulating layer of the capacitor. The polymer layer formed on the sidewalls of the upper electrode of the capacitor is cleaned and removed.
Abstract:
A lightweight and compact super-insulation system that is also capable of supporting a high level of compressive load. The system utilizes spacers to provide structural support and utilize controlled buckling of a thin protective outer skin supported by spacers to form strong catenary surfaces to protect insulation material underneath. The spacers may comprise an aerogel, or an aerogel may provide insulation separate from the spacer yet contained within the thin outer skin.