Abstract:
Embodiments of the invention provide a removable memory unit (RMU) that facilitates concatenation of said memory modules irrespective of their individual physical interfaces, enables encryption/decryption keys (including cryptographic ignition keys (CIKs)) to reside onboard the RMU, provides for physical separation of RED and BLACK data in cross-domain environments and implements zeroization functionality onboard the RMU. Further embodiments provide a swappable IO backplane and adapter plates for incorporation into a wide variety of platforms.
Abstract:
Some embodiments of the invention relate to WRAs that implement removable memory units (RMUs). The ability to load operational, maintenance, and mission data through RMUs is critical for avionics platform safety and logistics. However, due to strong hardware dependence, universality, or rather platform-invariance is not currently available for aircraft data acquisition (including the real-time recording of new performance, operational (flight) and environmental data) or mission data loading via prior art WRAs.
Abstract:
A method and an apparatus for vehicle driving guide with lamps are applied to a target road. The apparatus has a traffic condition detection module, multiple indication lamps and a signal control module. The traffic condition detection module obtains a traffic condition. The indication lamps are mounted separately on the target road. The signal control module is electrically connected to the traffic condition detection module and the indication lamps and operates the indication lamps according to a control process based on different traffic conditions. The control process may be in a chase mode that sequentially pulses the indication lamps on with a regulated moving direction of the target road with a pulse interval between turning the indication lamps on to present an impression that the lights are moving at an indicator speed. The impression allows drivers in vehicles on the target road to follow to drive.
Abstract:
A Lobster Eye X-ray Imaging System based on a unique Lobster Eye (LE) structure, X-ray generator, scintillator-based detector and cooled CCD (or Intensified CCD) for real-time, safe, staring Compton backscatter X-ray detection of objects hidden under ground, in containers, behind walls, bulkheads etc. In contrast to existing scanning pencil beam systems, Lobster Eye X-Ray Imaging System's true focusing X-ray optics simultaneously acquire ballistic Compton backscattering photons (CBPs) from an entire scene irradiated by a wide-open cone beam from one or more X-ray generators. The Lobster Eye X-ray Imaging System collects (focuses) thousands of times more backscattered hard X-rays in the range from 40 to 120 keV (or wavelength λ=0.31 to 0.1 Å) than current backscatter imaging sensors (BISs), giving high sensitivity and signal-to-noise ratio (SNR) and penetration through ground, metal walls etc. The collection efficiency of Lobster Eye X-ray Imaging System is optimized to reduce emitted X-ray power and miniaturize the device. This device is especially advantageous for and satisfies requirements of X-ray-based inspection systems, namely, penetration of the X-rays through ground, metal and other material concealments; safety; and man-portability. The advanced technology disclosed herein is also applicable to medical diagnostics and military applications such as mine detection, security screening and a like.
Abstract:
Method for fabricating a semiconductor device in which a by-product of etching is deposited on a photoresist film for using as a mask. The method for fabricating a semiconductor device includes the steps of depositing a polysilicon, and a bottom anti-refection coating on an entire surface of a substrate in succession, forming a photoresist film pattern on a predetermined portion of the bottom anti-refection coating, etching the bottom anti-refection coating by using the photoresist film pattern to deposit by-product of the etching on sidewalls of the photoresist pattern to form spacers, and etching the polysilicon by using the photoresist film pattern and the spacers, to form a line.
Abstract:
Two embodiments of a connector that can be mated without regard for its orientation are disclosed. One embodiment is mated and demated autonomously as part of a system for recovering, docking with, recharging and re-launching unmanned aerial vehicles. Another embodiment is employed on the decks of vessels to facilitate mating and demating of various equipment providing different functions to reconfigure the vessel. Because both embodiments are configured for connection irrespective of angular orientation over 360°, they are especially suited for harsh environments including autonomous operation, rough seas, darkness and the like.
Abstract:
A Lobster Eye X-ray Imaging System based on a unique Lobster Eye (LE) structure, X-ray generator, scintillator-based detector and cooled CCD (or Intensified CCD) for real-time, safe, staring Compton backscatter X-ray detection of objects hidden under ground, in containers, behind walls, bulkheads etc. In contrast to existing scanning pencil beam systems, Lobster Eye X-Ray Imaging System's true focusing X-ray optics simultaneously acquire ballistic Compton backscattering photons (CBPs) from an entire scene irradiated by a wide-open cone beam from one or more X-ray generators. The Lobster Eye X-ray Imaging System collects (focuses) thousands of times more backscattered hard X-rays in the range from 40 to 120 keV (or wavelength λ=0.31 to 0.1 Å) than current backscatter imaging sensors (BISs), giving high sensitivity and signal-to-noise ratio (SNR) and penetration through ground, metal walls etc. The collection efficiency of Lobster Eye X-ray Imaging System is optimized to reduce emitted X-ray power and miniaturize the device. This device is especially advantageous for and satisfies requirements of X-ray-based inspection systems, namely, penetration of the X-rays through ground, metal and other material concealments; safety; and man-portability. The advanced technology disclosed herein is also applicable to medical diagnostics and military applications such as mine detection, security screening and a like.
Abstract:
Disclosed is a controller for driving current of a semiconductor device having an over-driving function, the controller comprising: a load means supplied with an internal voltage; a plurality of switching means, each of which has a first terminal connected to an external voltage and a second terminal connected to the load means, wherein at least one of the plurality of switching means is selectively turned on/off according to an voltage level of the external voltage.
Abstract:
A hard disk drive that utilizes a plurality of integrated gain compensation values to correct a non-linear position error signal (PES) function of the drive. The gain compensation values are generated, integrated and stored during an initial burn-in process of the drive. The PES is used in a servo loop to position a head relative to a track of a disk. The PES may have a non-linear function such that the signal is not representative of the actual position of the head. The integrated gain compensation values are used to correct the non-linear function so that the PES more accurately reflects the position of the head relative to the track.
Abstract:
A hard disk drive that changes a variable write parameter of a head during a write operation. The controller can change the variable write parameter to compensate for a transient temperature profile of the head during the initial stage of a write operation. By way of example, the controller can provide a relatively large overshoot control signal of a head during the writing of a first sector of a write operation. The value of the overshoot control signal may be decremented for a second sector, a third sector etc., until the head attains a thermal steady state at which point the overshoot control signal is provided with a constant value.