Abstract:
Methods and apparatus, including computer program products, are provided for drone delivery of products. In one aspect there is provided a method, which may include selecting, at a user equipment, a product; and selecting, by the user equipment, a three-dimensional location where a drone deposits the selected product. Related systems, apparatus, and articles of manufacture are also disclosed.
Abstract:
A system for automatic watering of a plurality of plants using a programmable airborne vehicle (AV). The AV is capable of locating the plants to be watered via various wireless, sonar and pattern-recognition-based means. The AV is programmed with scheduling information such as the amount of water and the frequency of watering for each plant. The optional base unit acts as a refilling and recharging station for the AV.
Abstract:
A method includes positioning a vehicle on a vehicle base station such that a first payload is aligned with an aperture in the vehicle base station. The method includes aligning an empty docking station of a payload advancing assembly with the aperture. The method includes removing the first payload from the vehicle and placing the first payload in the empty docking station of the payload advancing assembly, where the full docking station includes a second payload. The method also includes aligning a full docking station of the payload advancing assembly with the aperture and securing the second payload to the vehicle.
Abstract:
An actual position of a load tethered with a tether to a vehicle is determined using a plurality of sensors disposed on the vehicle. A required tether tension and required tether angle of the tether is determined to move the load from the actual position to a commanded position. An actual tether tension and actual tether angle of the tether is determined using the plurality of sensors. A determination is made as to a thrust vector to be applied by the vehicle to change the actual tether tension and the actual tether angle of the tether to the required tether tension and the required tether angle. The thrust vector is applied with the vehicle to reposition the vehicle to achieve the required tether angle and to create the required tether tension of the tether to move the load to the commanded position.
Abstract:
A drone cargo helicopter having an elongated body. The elongated body has a low profile and has a front portion, a rear portion, an upper surface, a lower surface and a pair of opposing sides extending between the front and the rear portions. At least a first blade set is coupled to the upper surface and rotating in a first direction. Two or more struts are pivotally coupled to opposing sides or lower surface of the elongated body, the struts being coupled via a joint at a top end of the strut. The lower surface of the elongated body comprises a substantially planar surface between the front and rear portions, the substantially planar surface having one or more attachments to provide a rigid engagement with a container. The struts are pivotally movable between a first position and a second position, wherein in the first position, the struts support the elongated body a distance from a ground surface that is greater than a height of the container.
Abstract:
A micro-unmanned aerial vehicle deployment system is provided for a cruise missile having submunition compartments. The system includes a vehicle launch module releasable from the cruise missile submunition compartment. The vehicle launch system has a control circuit and at least one micro-unmanned aerial vehicle contained therein. Structure is provided in the launch module for deploying the micro-unmanned aerial vehicle. A separable tether can be joined between the cruise missile and the vehicle launch module that separates when subjected to tension after deployment of the vehicle launch module.
Abstract:
Structures and protocols are presented for configuring an unmanned aerial device to perform a task, alone or in combination with other entities, or for using data resulting from such a configuration or performance.
Abstract:
Some embodiments of the invention provide methods and apparatus enabling multiple unmanned cargo deliveries in a single mission. An assembly having multiple hooks may be coupled to an unmanned vehicle via a cable. Prior to a mission originating at a starting location, multiple cargo loads may each be loaded on to a respective pallet, wrapped in a cargo delivery net, and attached to one of the hooks. A ground controller may instruct the unmanned vehicle to deliver the cargo loads to separate locations. The unmanned delivery vehicle may navigate to a first delivery location, perform delivery of a first cargo load by causing the hook on the assembly to release the first load, autonomously exit the first location and navigate to a second delivery location without returning to the starting location, and perform delivery of a second cargo load by causing the hook on the assembly to release the second load.
Abstract:
The invention is a modular vehicle having an air vehicle that can be coupled to cargo containers, land vehicles, sea vehicles, medical transport modules, etc. In one embodiment the air vehicle has a plurality of propellers positioned around a main airframe, which can provide vertical thrust and/or horizontal thrust. One or more of the propellers may be configured to tilt forward, backward, and/or side-to-side with respect to the airframe.
Abstract:
An unmanned, towable aerovehicle is described and includes a container to hold cargo, an autogyro assembly connected to the container and to provide flight characteristics, and a controller to control operation the autogyro assembly for unmanned flight. The container includes a connection to connect to a powered aircraft to provide forward motive force to power the autogyro assembly. In an example, the autogyro assembly includes a mast extending from the container, a rotatable hub on an end of the mast, and a plurality of blades connected to the hub for rotation to provide lift to the vehicle. In an example, an electrical motor rotates the blades prior to lift off to assist in take off. The electrical motor does not have enough power to sustain flight of the vehicle.