Methods and systems for providing MEMS devices with a top cap and upper sense plate
    141.
    发明授权
    Methods and systems for providing MEMS devices with a top cap and upper sense plate 有权
    用于向MEMS器件提供顶盖和上感测板的方法和系统

    公开(公告)号:US07396698B2

    公开(公告)日:2008-07-08

    申请号:US11323233

    申请日:2005-12-30

    CPC classification number: B81B7/007 B81B2201/0242 B81C2203/0118

    Abstract: A method for fabricating a MEMS device having a top cap and an upper sense plate is described. The method includes producing a device wafer including an etched substrate, etched MEMS device components, and interconnect metal, a portion of the interconnect metal being bond pads and adding a metal wraparound layer to a back side, edges, and a portion of a front side of the device wafer. The method also includes producing an upper wafer including an etched substrate and interconnect metal, bonding the device wafer and the upper wafer, and dicing the bonded upper wafer and device wafer into individual MEMS devices.

    Abstract translation: 描述了一种用于制造具有顶盖和上感测板的MEMS器件的方法。 该方法包括制造包括蚀刻的衬底,蚀刻的MEMS器件部件和互连金属的器件晶片,互连金属的一部分是接合焊盘,并将金属环绕层添加到前侧的边缘和一部分 的器件晶片。 该方法还包括制造包括蚀刻衬底和互连金属的上晶片,结合器件晶片和上晶片,以及将结合的上晶片和器件晶片切割成单个MEMS器件。

    Wide and narrow trench formation in high aspect ratio MEMS
    143.
    发明申请
    Wide and narrow trench formation in high aspect ratio MEMS 有权
    宽和窄沟槽形成在高纵横比MEMS

    公开(公告)号:US20070026636A1

    公开(公告)日:2007-02-01

    申请号:US11192198

    申请日:2005-07-27

    Applicant: Bishnu Gogoi

    Inventor: Bishnu Gogoi

    CPC classification number: G01C19/5719 B81B2201/0242 B81C1/00063

    Abstract: Methods have been provided for forming both wide and narrow trenches on a high-aspect ratio microelectromechanical (MEM) device on a substrate including a substrate layer (126), an active layer (128), and a first sacrificial layer (130) disposed at least partially therebetween. The method includes the steps of forming a first trench (154), a second trench (156), and a third trench (152) in the active layer (128), each trench (154, 156, 152) having an opening and sidewalls defining substantially equal first trench widths, depositing oxide and sacrificial layers thereover and removing the oxide and sacrificial layers to expose the third trench (152) and form a fourth trench (190) in the active layer (128) from the first and the second trench (154, 156), the fourth trench (190) having sidewalls defining a second trench width that is greater than the first trench width.

    Abstract translation: 已经提供了用于在包括衬底层(126),有源层(128)和第一牺牲层(130)的基板上的高纵横比微机电(MEM)器件上形成宽沟槽和窄沟槽的方法, 其间最少部分。 该方法包括以下步骤:在有源层(128)中形成第一沟槽(154),第二沟槽(156)和第三沟槽(152),每个沟槽(154,156,152)具有开口和侧壁 限定基本相等的第一沟槽宽度,在其上沉积氧化物和牺牲层,并且去除氧化物层和牺牲层以暴露第三沟槽(152)并且在有源层(128)中从第一和第二沟槽(152)形成第四沟槽(190) (154,156),所述第四沟槽(190)具有限定大于所述第一沟槽宽度的第二沟槽宽度的侧壁。

    Physical quantity sensor
    145.
    发明申请
    Physical quantity sensor 有权
    物理量传感器

    公开(公告)号:US20060049497A1

    公开(公告)日:2006-03-09

    申请号:US11208603

    申请日:2005-08-23

    Applicant: Tameharu Ohta

    Inventor: Tameharu Ohta

    Abstract: A physical quantity sensor includes a package, a circuit chip disposed and held in the package, a sensor chip stacked and fixed on the circuit chip, and a wiring member having flexibility, through which the circuit chip and the package are electrically and mechanically bonded together. In the physical quantity sensor, unwanted external vibrations transmitted to the sensor chip are reduced without an external vibration dumping system such as a rubber pad, because the wiring member weakens the vibrations.

    Abstract translation: 物理量传感器包括封装,布置并保持在封装中的电路芯片,堆叠并固定在电路芯片上的传感器芯片和具有柔性的布线构件,电路芯片和封装通过该布线构件电连接和机械地结合在一起 。 在物理量传感器中,由于布线部件减弱了振动,传递到传感器芯片的不需要的外部振动减小,而不需要诸如橡胶垫的外部振动倾倒系统。

    Methods and systems for decelerating proof mass movements within MEMS structures
    146.
    发明授权
    Methods and systems for decelerating proof mass movements within MEMS structures 有权
    减少MEMS结构中的质量运动的方法和系统

    公开(公告)号:US06865944B2

    公开(公告)日:2005-03-15

    申请号:US10320850

    申请日:2002-12-16

    CPC classification number: G01C19/5719 B81B3/0051 B81B2201/0242

    Abstract: A micro-electromechanical systems (MEMS) device is described which includes a substrate having at least one anchor, a proof mass having either of at least one deceleration extension extending from the proof mass or at least one deceleration indentation formed in the proof mass, a motor drive comb, and a motor sense comb. The MEMS device further includes a plurality of suspensions configured to suspend the proof mass over the substrate and between the motor drive comb and the motor sense comb, and the suspensions are anchored to the substrate. The MEMS device also includes a body attached to the substrate and at least one deceleration beam extending from the body. The deceleration extensions are configured to engage either deceleration beams or deceleration indentations and slow or stop the proof mass before it contacts either of the motor drive comb or the motor sense comb.

    Abstract translation: 描述了一种微机电系统(MEMS)装置,其包括具有至少一个锚的基板,具有至少一个从检验块延伸的至少一个减速延伸或在形成于检验块中的至少一个减速凹陷中的任一个的检验质量 电机驱动梳,电机感应梳。 MEMS装置还包括多个悬架,其构造成将证明块悬挂在基板上以及马达驱动梳和马达感应梳之间,悬架被锚定到基板上。 MEMS装置还包括附接到基板的主体和从主体延伸的至少一个减速光束。 减速延伸部分配置为接合减速梁或减速凹口,并且在接触任何一个电动机驱动梳或电动机感应梳之前减速或停止检测质量。

    ELECTROSTATIC SPRING SOFTENING IN REDUNDANT DEGREE OF FREEDOM RESONATORS
    147.
    发明申请
    ELECTROSTATIC SPRING SOFTENING IN REDUNDANT DEGREE OF FREEDOM RESONATORS 有权
    静电弹簧在自由度共振器的冗余度下进行

    公开(公告)号:US20040226370A1

    公开(公告)日:2004-11-18

    申请号:US10423456

    申请日:2003-04-25

    CPC classification number: B81B3/0062 B81B2201/0242 G01C19/56 Y10T74/1275

    Abstract: The present invention discloses an isolated electrostatic biased resonator gyroscope. The gyroscope includes an isolated resonator having a first and a second differential vibration mode, a baseplate supporting the isolated resonator, a plurality of excitation affixed to the baseplate for exciting the first differential vibration mode, a plurality of sensing electrodes affixed to the baseplate for sensing movement of the gyroscope through the second differential vibration mode and a plurality of bias electrodes affixed to the baseplate for trimming isolation of the resonator and substantially minimizing frequency split between the first and second differential vibration modes. Typically, the isolated resonator comprises a proof mass and a counterbalancing plate with the bias electrodes disposed on the baseplate below.

    Abstract translation: 本发明公开了一种隔离静电偏置谐振器陀螺仪。 陀螺仪包括具有第一和第二差分振动模式的隔离谐振器,支撑隔离谐振器的基板,固定到基板上用于激励第一差分振动模式的多个激励,固定到基板的多个感测电极,用于感测 陀螺仪通过第二差分振动模式的移动和固定到基板上的多个偏置电极,用于微调谐振器的隔离并基本上最小化第一和第二差动振动模式之间的频率分配。 通常,隔离谐振器包括校验块和平衡板,其中偏置电极设置在下面的底板上。

    A DUAL-WAFER TUNNELING GYROSCOPE AND AN ASSEMBLY FOR MAKING SAME
    148.
    发明申请
    A DUAL-WAFER TUNNELING GYROSCOPE AND AN ASSEMBLY FOR MAKING SAME 失效
    双波纹透镜及其制造方法

    公开(公告)号:US20040217388A1

    公开(公告)日:2004-11-04

    申请号:US10853848

    申请日:2004-05-25

    Abstract: A MEM tunneling gyroscope assembly includes (1) a beam structure, and a mating structure defined on a first substrate or wafer; and (2) at least one contact structure, and a mating structure defined on a second substrate or wafer, the mating structure on the second substrate or wafer being of a complementary shape to the mating structure on the first substrate or wafer; and (3) a bonding layer is disposed on at least one of said mating structures for bonding the mating structure defined on the first substrate or wafer to the mating structure on the second substrate or wafer.

    Abstract translation: MEM隧道陀螺仪组件包括(1)梁结构和限定在第一衬底或晶片上的配合结构; 以及(2)至少一个接触结构以及限定在第二衬底或晶片上的配合结构,所述第二衬底或晶片上的所述配合结构与所述第一衬底或晶片上的配合结构互补形状; 和(3)粘合层设置在至少一个所述配合结构上,用于将限定在第一衬底或晶片上的配合结构接合到第二衬底或晶片上的配合结构。

    Acceleration sensor and manufacturing method for the same

    公开(公告)号:US06772632B2

    公开(公告)日:2004-08-10

    申请号:US10419610

    申请日:2003-04-21

    Applicant: Kazuhiro Okada

    Inventor: Kazuhiro Okada

    Abstract: The present invention easily achieves an accurate control structure for limiting displacement of a weight. An SOI substrate with a trilaminar structure including a silicon layer, a silicon oxide layer, and a silicon layer is prepared, and slits are opened by applying induced coupling plasma etching which can selectively remove only silicon from the upper side. Then, the same etching is applied from the lower side to form grooves, whereby the lower silicon layer is separated into a weight and a pedestal. Next, the structure is immersed in an etchant which can selectively remove only silicon oxide, whereby the vicinities of exposed portions of the silicon oxide layer are removed to form joint layers. A glass substrate is joined to the bottom surface of the pedestal. Piezo resistor elements are formed on the upper surface of the silicon layer to detect bending. The degree of freedom of upward displacements of the weight is accurately set based on the thickness of the joint layer.

    Method for making micromechanical structures having at least one lateral, small gap therebetween and micromechanical device produced thereby
    150.
    发明申请
    Method for making micromechanical structures having at least one lateral, small gap therebetween and micromechanical device produced thereby 有权
    用于制造具有至少一个横向的小间隙的微机械结构的方法和由此产生的微机械装置

    公开(公告)号:US20040150057A1

    公开(公告)日:2004-08-05

    申请号:US10625992

    申请日:2003-07-24

    Abstract: A method and resulting formed device are disclosed wherein the method combines polysilicon surface-micromachining with metal electroplating technology to achieve a capacitively-driven, lateral micromechanical resonator with submicron electrode-to-resonator capacitor gaps. Briefly, surface-micromachining is used to achieve the structural material for a resonator, while conformal metal-plating is used to implement capacitive transducer electrodes. This technology makes possible a variety of new resonator configurations, including disk resonators and lateral clamped-clamped and free-free flexural resonators, all with significant frequency and Q advantages over vertical resonators. In addition, this technology introduces metal electrodes, which greatly reduces the series resistance in electrode interconnects, thus, minimizing Q-loading effects while increasing the power handling ability of micromechanical resonators.

    Abstract translation: 公开了一种方法和产生的形成的器件,其中该方法将多晶硅表面微机械加工与金属电镀技术相结合,以实现具有亚微米电极到谐振器的电容器间隙的电容驱动的横向微机械谐振器。 简而言之,使用表面微加工来实现谐振器的结构材料,而使用保形金属镀来实现电容式换能器电极。 该技术使得各种新的谐振器配置成为可能,包括磁盘谐振器和横向夹紧和自由弯曲谐振器,与垂直谐振器相比具有显着的频率和Q优点。 此外,该技术引入了金属电极,这大大降低了电极互连中的串联电阻,从而在增加微机械谐振器的功率处理能力的同时最大限度地减小了Q负载效应。

Patent Agency Ranking