Abstract:
A membrane element 36 includes filtration membranes 45 on the flat part of the membrane element 36. Spacing members 60 keep spacing S between the filtration membranes 45 between the membrane elements 36 when the membrane elements 36 are arranged with the filtration membranes 45 opposed to each other. The spacing members 60 each have spacer sections 61a and 61b that keep the spacing S between the filtration membranes 45 between the membrane elements 36 in the direction of a membrane surface cleaning stream that flows along the surface of the filtration membrane 45.
Abstract:
A capacitive deionization apparatus, wherein a spacing distance between electrodes of cells is uniformly maintained and a flow in the cells is optimized to improve efficiency of the deionization apparatus and contact resistance between a carbon material and a collector is reduce to improve electrical conductivity, is disclosed. The capacitive deionization apparatus which includes a plurality of electrode modules, each having a collector and electrodes disposed on upper and lower surfaces of the collector to electrically and chemically remove ions from liquid, includes a plurality of plates made of a stiff material are alternately stacked with the electrode modules such that the electrode modules are spaced at specific intervals, wherein the collector and the electrodes are pressed by a pair of adjacent plates among the plurality of plates to maintain a contact therebetween.
Abstract:
An air distribution and mixing device is arranged in the vicinity of the bottom of a flotation cell for distributing air to the slurry for forming froth and mixing the slurry in the flotation cell. A rotor part of the air distribution and mixing device has air distribution apertures and is attached to the lower end of a drive shaft extending vertically in the flotation cell. The drive shaft has a hollow interior, which constitutes a flow channel for conducting flotation air to the air distribution holes of the rotor part. An electric motor for rotating the drive shaft is supported by a separate supporting framework, which is on top of the flotation cell. The electric motor is a permanent magnet motor that comprises having a vertical rotor shaft, the lower end of which is in permanent contact directly with the upper end of the drive shaft.
Abstract:
A system for treating wastewater including at least one water-treatment pathway having at least one wastewater inlet, at least one oxygen-permeable, water-impermeable wall, separating an interior of the pathway from outside air, and at least one treated wastewater outlet and arranged for at least aerobic treatment of the wastewater as it flows from the at least one wastewater inlet to the at least one treated wastewater outlet, at least one wastewater supply conduit, supplying the wastewater to the at least one wastewater inlet of the water-treatment pathway and at least one treated wastewater conduit, supplying treated wastewater from the at least one treated wastewater outlet of the at least one water-treatment pathway.
Abstract:
A device for inoculating fluid conducted through pipes includes a reservoir configured to hold an inoculant. The reservoir includes an outlet through which the inoculant is feedable to at least one of the pipes and an inlet configured to route compressed air into an interior of the reservoir.
Abstract:
The invention relates to a device for breaking the electrical continuity of the stream of caustic soda produced in mercury-cathode chlor-alkali plants. The device is comprised of a vessel internally subdivided into three compartments by two flow-conveying septa, the three compartments being in communication and defining a caustic soda tortuous flow-path allowing the centrifugal deposition of mercury microdroplets released by the upstream amalgam decomposer.
Abstract:
Disclosed herein are systems and methods for desalination of salt water based on an engineered acoustic field that causes constructive and destructive interference at pre-computed spatial positions. The engineered acoustic field can cause high-pressure and low-pressure regions where desalination membranes are located. The induced pressure from the acoustic field can force pure water through the membranes leaving ionic and dissolved molecular species behind.
Abstract:
Bubble generator devices to produce a fluid stream comprising bubbles are described. Apparatuses that include any of the described bubble generator devices to treat waste and/or frac-water are also described.
Abstract:
Fluid filtration devices, systems and methods are disclosed. The device comprises, for example, an influent feed tube; an influent receiving bowl in fluid communication with the influent feed tube; and a plurality of radial arms having filters therein configured to rotate about an axis within the influent receiving bowl. The fluid filtration devices, which can be configured to filter a wide variety of fluids, comprises: an influent feed tube; an influent receiving bowl in fluid communication with the influent feed tube; and a plurality of radial arms having filters therein configured to rotate about an axis within the influent receiving bowl. Additionally, methods are provided for that comprise, for example: obtaining an influent from a target source of fluid to be filtered; filtering the influent in a first filtration step; filtering the influent in a second filtration step upon receiving effluent from the first filtration step by transferring influent through a plurality of radial arms by rotating the radial arms having filters disposed therein about an axis in a filtration unit; and emitting a final filtered fluid effluent.
Abstract:
A chlorine-generating apparatus is herein disclosed which uses softened household water and salt. The apparatus includes a freestanding brine tank to hold salt and softened household water. The brine tank includes a submerged chlorine-generating cell, an improved chlorine-generating cell container, and a cell-cleaning reservoir. The brine tank also includes a precipitation tank to help remove minerals from the incoming household water. The chlorine-generating apparatus generates sodium hypochlorite, sodium hydroxide, as well as other sanitizing chemicals. The chlorine-generating apparatus also incorporates an improved method for controlling pH. A water-cooled power supply independently delivers power to the chlorine-generating cell.