Abstract:
At least three elementary optical fibers are covered with a jacket layer. Each of the elementary optical fibers has a core of a first refractive index doped with at least one rare earth element and Al, and a cladding layer of a second refractive index lower than the first refractive index for covering the core. A value of (1+2t/Dw) is ranged to be 1.1 to 2.5, where t is a thickness of the cladding layer, and Dw is an outer diameter of the core, and a doping amount of Al is at least 1 weight %. The at least three elementary optical fibers are inserted into a jacket tube, and the elementary optical fibers and the jacket tube are heated to be welded at contact surfaces thereof by vacuum-drawing air from interstices of the elementary optical fibers and the jacket tube. Thus, a preform is obtained, and the preform is heated to be drawn. Consequently, a rare earth element-doped multiple-core optical fiber is fabricated. The rare earth element-doped multiple-core optical fiber is used to amplify a signal light to be propagated therethrough by receiving an excitation light.
Abstract:
This invention relates to the production of high purity fused silica glass through oxidation and/or flame hydrolysis of a halide-free, organosilicon-R compound in vapor form having the following properties:(a) producing a gas stream of a halide-free silicon-containing compound in vapor form capable of being converted through thermal decomposition with oxidation or flame hydrolysis to SiO.sub.2 ;(b) passing said gas stream into the flame of a combustion burner to form amorphous particles of fused SiO.sub.2 ;(c) depositing said amorphous particles onto a support; and(d) either essentially simultaneously with said deposition or subsequently thereto consolidating said deposit of amorphous particles into a virtually nonporous body; the improvement comprising utilizing a halide-free, organosilicon-R compound in vapor form having the following properties:(1) a Si--R bond dissociation energy that is no higher than the dissociation energy of the Si--O bond;(2) a boiling point no higher than 350.degree. C.; and(3) which, upon pyrolysis and/or hydrolysis, will produce decomposition products beside SiO.sub.2 which are deemed to be environmentally safe or the emissions are below acceptable governmental standards.
Abstract:
An optical waveguide for a communication system includes a graded index core formed from at least three glass-forming compounds with a profile having at least two .alpha.-type index profile terms.The core has a refractive index which is n.sub.c at the center of the core and which varies as a function of the radial distance r from the center of the core substantially as: ##EQU1## where .alpha..sub.i is defined by: ##EQU2## .DELTA.=(n.sub.c.sup.2 -n.sub.o.sup.2)/2n.sub.c.sup.2, n.sub.o is the refractive index of said compounds at r=a,N.sub.c =n.sub.c -.lambda.dn.sub.c /d.lambda. where .lambda. is the wavelength of the light source, and the quantities .DELTA..sub.i are parameters which can be varied provided the condition ##EQU3## is satisfied.
Abstract:
A single mode optical waveguide is constructed in a manner such that the core thereof is subjected to a stress-induced birefringence. The fiber comprises an oblong core surrounded by an oblong inner cladding layer. An outer layer of stress cladding glass, which has a circular outer surface, surrounds the inner cladding layer. The TCE of the stress cladding glass is different from that of the inner cladding glass.
Abstract:
A preform is prepared to comprise a step index structure consisting of a core and a clad both made of metal halogenides or arsenic-selenium glass sparingly capable of transmitting infrared light of long wavelength and a layer of lubricant applied to the outer surface of the clad. The preform is set inside a metal cylinder. By pulling this metal cylinder through a plurality of dies containing orifices of successively decreased diameters at a temperature below the melting point, the preform can be elongated into an optical fiber of a prescribed diameter. The optical fiber thus produced is capable of transmitting infrared light of high power with a small loss. Protected and reinforced by the metal cylinder jacket, this fiber enjoys high mechanical strength.
Abstract:
A process for making a tubular optical waveguide preform for a high-numerical-aperture optical waveguide which comprises an inner compression layer for enhanced preform strength, and a soot preform produced in accordance with the process, are described.
Abstract:
A method is provided for making an optical fiber by melting and cladding a multi-component core glass without adding the contamination that is normally associated with these processes. As an initial step, a pure multi-component glass is melted in a high purity silica crucible. The temperature of the glass in the crucible and the temperature of the orifice thereof are controlled so that a cane of glass is drawn from the bottom of the crucible. This cane of glass is fed into a silica or borosilicate tube which is being drawn into a fiber. This results in an optical fiber in which the multi-component glass forms the core while the tube forms the cladding.
Abstract:
A process for continuously monitoring the content of boron oxide in a stream of borosilicate particles as it is applied to a glass rod during the production of optical fiber is disclosed. Monitoring is accomplished by continuously measuring the infra-red absorption bands of the particles at or near the point of deposition on the rod.
Abstract:
An optical waveguide for a communication system includes a graded index core formed from at least three glass-forming compounds with a profile having at least two .alpha.-type index profile terms.The core has a refractive index which is n.sub.c at the center of the core and which varies as a function of the radial distance r from the center of the core subststantially as: ##EQU1## where .alpha..sub.i is defined by: ##EQU2## where N.gtoreq.2,.DELTA.=(n.sub.c.sup.2 -n.sub.0.sup.2)/2n.sub.c.sup.2,n.sub.o is the refractive index of said compounds at r=a,N.sub.c =n.sub.c -.lambda.dn.sub.c /d.lambda. where .lambda. is the wavelength of the light source, and the quantities .DELTA..sub.i are parameters which can be varied provided the condition ##EQU3## is satisfied.
Abstract:
A method for forming optical fibres from a double crucible wherein one crucible supplies the core material and the other crucible supplies the cladding material. The two melts are supplied in a continuous process to insure a constant core to cladding diameter ratio.