Abstract:
Provided is a method for producing an inexpensive chalcogenide optical element having high performance. An inside of chalcogenide glass is also heated uniformly by heating the chalcogenide glass with an infrared ray (light LI). Therefore, a molded lens LE hardly causes a crack or the like, a work piece WP as a block of the chalcogenide glass can be softened in a short time, and time required for molding can be shortened. In addition, direct heating with an infrared ray (light LI) allows heating and cooling to be performed in a short time. Therefore, an effect of volatilization, oxidation, crystallization, or the like can be reduced, and the lens LE having a high transmittance can be molded. Press molding can be performed while the temperature of the second mold die 12 is lower than that of the glass. Therefore, the lens LE hardly causing fusion and having an excellent appearance can be molded with a low maintenance frequency.
Abstract:
In one embodiment, a chalcogenide glass optical fiber is produced by forming a billet including a chalcogenide glass mass and a polymer mass in a stacked configuration, heating the billet to a temperature below the melting point of the chalcogenide glass, extruding the billet in the ambient environment to form a preform rod having a chalcogenide glass core and a polymer jacket, and drawing the preform rod.
Abstract:
A method and apparatus for applying a mid-IR graded microstructure to the end of a chalcogenide glass optical fiber are presented herein. The method and apparatus transfer a microstructure from a negative imprint on a nickel shim to a chalcogenide glass fiber tip with minimal shape distortion and minimal damage-threshold impact resulting in large gains in anti-reflective properties.
Abstract:
The present invention is generally directed to a photonic bad gap fiber and/or fiber preform with a central structured region comprising a first non-silica based glass and a jacket comprising a second non-silica based glass surrounding the central structured region, where the Littleton softening temperature of the second glass is at least one but no more than ten degrees Celsius lower than the Littleton softening temperature of the first glass, or where the base ten logarithm of the glass viscosity in poise of the second glass is at least 0.01 but no more than 2 lower than the base ten logarithm of the glass viscosity in poise of the first glass at a fiber draw temperature. Also disclosed is a method of making a photonic bad gap fiber and/or fiber preform.
Abstract:
Glass includes an aggregate of solid electrolyte particles including Li, P, and S, wherein when a Raman spectrum of the glass is repeatedly measured and a peak at 330 to 450 cm−1 in each Raman spectrum is separated to waveforms of individual components, a standard deviation of a waveform area ratio of each component is less than 4.0.
Abstract:
A method for producing sulfide-based glass ceramics including crystallizing a glass solid electrolyte, wherein the glass solid electrolyte includes: sulfide-based glass comprising at least a sulfur element and a lithium element; and a nitrile compound incorporated into the sulfide-based glass.
Abstract:
A method for manufacturing an optical fiber preform, including: a) providing a lining tube as a substrate tube, and doping and depositing by a PCVD or an MCVD process; b) in the reacting gas of silicon tetrachloride and oxygen, introducing a fluorine-containing gas for fluorine doping, introducing germanium tetrachloride for germanium doping, ionizing the reacting gas in the lining tube through microwaves to form plasma, depositing the plasma on the inner wall of the lining tube in the form of glass; c) after the completion of deposition, processing the deposited lining tube into a solid core rod by melting contraction through an electric heating furnace; d) sleeving the solid core rod into a pure quartz glass jacketing tube and manufacturing the two into an optical fiber preform; and e) allowing the effective diameter d of the optical fiber preform to become between 95 and 205 mm.
Abstract:
Optical fibers and optical fiber tapers have application within many optical systems and optical devices. To date manufacturing such fibers and fiber tapers has been restricted to drawing constant diameter fibers in gravity driven processes and symmetric tapers through pulling with localized heating. However, it would be beneficial to be able to generate arbitrary profiles when pulling an optical fiber into a fiber taper allowing an initial uniform section, reducing transition, wire section, increasing transition and final uniform section. Further, the technique further allows novel optical fiber geometries to be fabricated, which the inventors refer to a hybrid tapers wherein additional elements such as coatings, which provide mechanical and environment protection, may be incorporated into the initial preform and processed simultaneously with the fabrication of the optical taper such that the final fabricated hybrid tapers are mechanically robust and handleable thereby improving manufacturing yield and reducing cost.
Abstract:
Glass includes an aggregate of solid electrolyte particles including Li, P, and S, wherein when a Raman spectrum of the glass is repeatedly measured and a peak at 330 to 450 cm−1 in each Raman spectrum is separated to waveforms of individual components, a standard deviation of a waveform area ratio of each component is less than 4.0.