Abstract:
The present disclosure is directed to a method of making an optical fiber with improved bend performance, the optical fiber having a core and at least one cladding layer, and a chlorine content in the in the last layer of the at least one cladding layer that is greater than 500 ppm by weight. The fiber is prepared using a mixture of a carrier gas, a gaseous chlorine source material and a gaseous reducing agent during the sintering of the last or outermost layer of the at least one cladding layer. The inclusion of the reducing gas into a mixture of the carrier gas and gaseous chlorine material reduces oxygen-rich defects that results in at least a 20% reduction in TTP during hydrogen aging testing.
Abstract:
A single mode optical fiber having a core made from silica and less than or equal to about 6.5 weight % germania and having a maximum relative refractive index Δ1MAX. The optical fiber also has an inner cladding surrounding the core and having a minimum relative refractive index Δ2MIN. A difference between a softening point of the core and a softening point of the inner cladding is less than or equal to about 20° C., and Δ1MAX>Δ2MIN. The single mode optical fiber may also have an outer cladding surrounding the inner cladding made from silica or SiON. The outer cladding has a maximum relative refractive index Δ3MAX, and Δ3MAX>Δ2MIN. A method for manufacturing an optical fiber includes providing a preform to a first furnace, the preform, drawing the optical fiber from the preform, and cooling the drawn optical fiber in a second furnace.
Abstract:
An optical waveguide having a cladding layer formed of high-purity glass, or a cladding layer formed of high-purity isotope-proportion modified glass, and with a core of high-purity isotope-proportion-modified glass with the index of refraction of the core glass greater than the index of refraction of the cladding glass, said high-purity isotope-proportion-modified core material having a Si-29-isotope proportion at most 4.447% Si-29 (atom/atom) of all silicon atoms in said core, or at least 4.90% of Si-29 (atom/atom) atoms in said core, or having a Ge-73 isotope proportion of at most 7.2% Ge-73 (atom/atom) of all germanium atoms in said core, or at least 8.18% of Ge-73 (atom/atom) of Germanium atoms in said core region.
Abstract:
Embodiments of the invention relate to a hydrogen-resistant optical fiber with a core having a central axis. The core may include only silica, or only silica and fluorine, while a cladding region surrounding the core may be made of silica and fluorine, along with at least one of germanium, phosphorus, and titanium.
Abstract:
An optical waveguide having a cladding layer formed of high-purity glass, or a cladding layer formed of high-purity isotope-proportion modified glass, and with a core of high-purity isotope-proportion-modified glass with the index of refraction of the core glass greater than the index of refraction of the cladding glass, said high-purity isotope-proportion-modified core material having a Si-29-isotope proportion at most 4.447% Si-29 (atom/atom) of all silicon atoms in said core, or at least 4.90% of Si-29 (atom/atom) atoms in said core, or having a Ge-73 isotope proportion of at most 7.2% Ge-73 (atom/atom) of all germanium atoms in said core, or at least 8.18% of Ge-73 (atom/atom) of Germanium atoms in said core region.
Abstract:
The invention relates to a silica glass compound having improved physical and chemical properties. In one embodiment, the present invention relates to a silica glass having a desirable brittleness in combination with a desirable density while still yielding a glass composition having a desired hardness and desired strength relative to other glasses. In another embodiment, the present invention relates to a silica glass composition that contains at least about 85 mole percent silicon dioxide and up to about 15 mole percent of one or more dopants selected from F, B, N, Al, Ge, one or more alkali metals (e.g., Li, Na, K, etc.), one or more alkaline earth metals (e.g., Mg, Ca, Sr, Ba, etc.), one or more transition metals (e.g., Ti, Zn, Y, Zr, Hf, etc.), one or more lanthanides (e.g., Ce, etc.), or combinations of any two or more thereof.
Abstract:
An ytterbium-doped optical fiber of the present invention includes: a core which contains ytterbium, aluminum, and phosphorus and does not contain germanium; and a cladding which surrounds this core. The ytterbium concentration in the core in terms of ytterbium oxide is 0.09 to 0.68 mole percent. The molar ratio between the phosphorus concentration in the core in terms of diphosphorus pentoxide and the above ytterbium concentration in terms of ytterbium oxide is 3 to 30. The molar ratio between the aluminum concentration in the core in terms of aluminum oxide and the above ytterbium concentration in terms of ytterbium oxide is 3 to 32. The molar ratio between the above aluminum concentration in terms of aluminum oxide and the above phosphorus concentration in terms of diphosphorus pentoxide is 1 to 2.5.
Abstract:
The present invention relates to an optical fiber for an optical amplifier and a method for manufacturing the same, which can be applied to an optical transmission system in the S-band area (4130 nm-1530 nm). According to the present invention, silica is used as a base material and the optical fiber for an optical amplifier contains Tm3+ ions and metal ions in a first core layer formed on an inner surface of a second core layer using the MCVD (Modified Chemical Vapor Deposition) method and a solution doping method whereby the practicability and productivity of the optical fiber are remarkably improved.
Abstract:
Disclosed are optical resonators having low OH content in at least the near-surface region and a process for making low OH glass article by chlorine treatment of consolidated glass of the article. Cl2 gas was used to remove OH from depth as deep as 350 μm from the surface of the consolidated glass. The process can be used for treating flame-polished preformed optical resonator disks. A new process involving hot pressing or thermal reflowing for making planar optical resonator disks without the use of flame polishing is also disclosed.
Abstract:
A thulium doped silicate glass composition which contains SiO2, Al2O3, and La2O3 emits visible and UV light when excited by infrared light. The glass composition may also contain GeO2 and Er2O3. When excited by infrared light of about 1060 nm, the glass emits visible light at fluorescent transitions of the Tm3null ions with major broad features at 365, 455, 472, 651, and 791 nm.
Abstract translation:含有SiO 2,Al 2 O 3和La 2 O 3的掺doped硅酸盐玻璃组合物在被红外光激发时发射可见光和UV光。 玻璃组合物还可以含有GeO 2和Er 2 O 3。 当由约1060nm的红外光激发时,玻璃在365nm,455nm,472nm,651nm和791nm处具有主要的广泛特征,在Tm 3+离子的荧光转变下发射可见光。