Abstract:
A mechanism for operating one or more valves of a piston device, in particular an intake or exhaust valve of an internal-combustion engine, which valve can move between an open position and a closed position and is provided with associated restoring means for returning the valve to the closed position. The mechanism comprises a hydraulic valve actuator for operating the valve of the piston device, which valve actuator has a variable chamber which is delimited by a piston which can be coupled to the valve, in such a manner that when hydraulic fluid is supplied to the said chamber the valve opens. Furthermore, there are rotatable first and second cams, each having an associated cam follower, the relative angular position of the first cam and the second cam with respect to one another being adjustable. The mechanism also comprises a pressure actuator in which there is a pressure chamber having a variable volume and having a first and a second plunger, the first cam follower being coupled to the first plunger and the second cam follower being coupled to the second plunger, and retraction of one plunger leading to a reduction in the volume of the pressure chamber. The pressure chamber of the pressure actuator is connected to the variable chamber of the valve actuator to form a common chamber. The common chamber is provided with an opening, which opening has an associated valve assembly for opening and closing the opening. In the open position, the hydraulic pressure is insufficient to open or hold open the valve. The mechanism is designed in such a manner that, at the moment at which the first plunger begins to move out of the extended position into the retracted position, the second plunger is in its retracted position or has almost reached its retracted position, in such a manner that the valve which is operated by the valve actuator opens as a result of the retracting movement of the first plunger.
Abstract:
The valve drive mechanism is particularly suitable for internal combustion engines of motor vehicles. The mechanism has at least one driven cam element and a valve control member which is moved (translationally or rotationally) by the cam element. The cam element is rotatingly mounted in a flexible surround element which is connected to the valve control member in a plane orthogonal to the axis of rotation of the cam element. The surround element can be reversably extended, such as elastically extended, to enable a variation in the resulting valve lift.
Abstract:
A roller finger follower. includes an elongate body having first and second opposing sides each having respective inside surfaces. First and second grooves are defined by the respective inside surfaces. A slider bracket includes a top plate having a top surface that is substantially perpendicular to the first and second sides. First and second projections are affixed to or integral with the top plate, and protrude therefrom in a generally parallel manner relative to the top surface. The first projection is slidably disposed within the first groove and the second projection is slidably disposed within the second groove. A locking pin assembly is carried by the slider bracket, and selectively couples and decouples the slider bracket to and from the body.
Abstract:
A valve control apparatus is provided for an internal combustion engine having a valve and a camshaft. The camshaft has an axis of rotation, a first raised portion and a second raised portion adjacent to the first raised portion. The second raised portion is angularly spaced-apart about the axis from the first raised portion. The apparatus includes a follower operatively engagable with the camshaft and the valve. The follower has a first operational mode where the first raised portion operatively engages the follower on each revolution of the camshaft to open the valve a first time on each revolution. There is a mechanism for selectively putting the follower in a second operational mode where the second raised portion operatively engages the follower to open the valve a second time on each revolution of the camshaft. The mechanism puts the follower in the second operational mode on each revolution of the camshaft before the second raised portion is fully aligned with the follower. The mechanism has a device which returns the follower to the first mode after the valve is opened by the second raised portion and before the first raised portion fully operatively engages the follower. Maximum opening and closing of the valve by the first raised portion is thereby unaffected when the mechanism selectively puts the follower in the second operational mode. The device is triggered by the camshaft or by relative movement between a portion of the rocker arm assembly and the valve.
Abstract:
Variable valve characteristic control apparatuses realize a change in a valve characteristic in accordance with a requirement of an internal combustion engine and a three-dimensional cam for use in the variable valve characteristic control apparatus. In the case of an intake valve, two lift patterns and continuously varying lift patterns between the two lift patterns are realized by the three-dimensional cam through the driving of the variable valve characteristic control apparatus. The two lift patterns provide different amounts of lift in the delay side of a peak within a valve operation angle, but provide equal amounts of lift in the delay side of the peak. Since the intake cam has the two lift patterns, it is possible to select a phase where the two lift patterns provide equal amounts of lift and provide different amounts of lift in phases other than the equal-lift phase so as to accord to the characteristics of the internal combustion engine. Therefore, it is possible to achieve conformation to the characteristics of the engine and therefore constantly realize a suitable valve characteristic in accordance with the operational condition of the engine. Hence, improvements can be achieved in the output performance of the engine, the fuel consumption, the combustion stability and the like.
Abstract:
A tappet (1) with a hydraulic clearance compensation element (7), a positive opening of a one-way valve (15) being effected during a base circle region &agr; of the contacting cam (5) whereby a closing member (16) of the one-way valve (15) is loaded by an adjusting element (21), the adjusting element (21) extends through a bottom (3) of the tappet (1) and cooperates with a groove (22) on the outer peripheral surface (23) of the cam (5), the groove (22) extends over the entire periphery of the cam (5) with the exception of its base circle region so that when the base circle region &agr; comes to be situated opposite the bottom (3), a positive opening of the closing member (16) is effected whereby no undesired relieving of the gas exchange valve actuated by the tappet (1) nor its opening due to a transmission of undesired opening movements from the cam (5) to the clearance compensation element (7) can occur in the base circle region &agr; of the cam (5).
Abstract:
An overhead cam engine with a drive train including a crankshaft, connecting rod, and piston assembly for reciprocating the piston within the cylinder bore of a cylinder block. A cam ring rotates on the same axis as that along which the piston reciprocates, and has lobes on its upper surface for periodically actuating a pair of rocker arms which open and close intake and exhaust valves located within the cylinder head. The cam ring is driven at half speed by the crankshaft through a gear train arrangement including a timing shaft disposed on an axis parallel to the piston axis with gears at both ends for connecting the crankshaft with the cam ring.
Abstract:
A method for improving efficiency and reducing emissions of an internal combustion engine. Variable displacement engine capabilities are achieved by disabling engine valves during load changes and constant load operations. Active cylinders may be operated at minimum BSFC by intermittently disabling other cylinders to provide the desired net torque. Disabling is begun by early closing of the intake valve to provide a vacuum at BDC which will result in no net gas flow across the piston rings, and minimum loss of compression energy in the disabled cylinder; this saving in engine friction losses is significant with multiple disablements.
Abstract:
A two-cycle action cam having two protruding parts 1a and 1b and a four-cycle action cam 3 having one protruding part 3a are selectively used by a cam change mechanism 46i. The two-cycle action cam 1 effects opening of the inlet and exhaust valves once per revolution of the crankshaft and the four-cycle action cam 3 effects opening of the inlet and exhaust valves once per two revolutions of the crankshaft. The four-cycle action is selected when the engine is in the low revolving speed and running at a low load and the two-cycle action is otherwise selected.
Abstract:
A method of controlling a four stroke internal combustion engine having at least one combustion chamber, the or each combustion chamber having at least one exhaust valve, the method including varying the timing of the closure of the or each exhaust valve with respect to the crank angle of the engine by advancing the exhaust valve closure at least under certain engine conditions in response to an increased engine load, and/or delaying the exhaust valve closure at least under certain conditions in response to a decreased engine load.