Abstract:
The construction of a film on a wafer, which is placed in a processing chamber, may be carried out through the following steps. A layer of material is deposited on the wafer. Next, the layer of material is annealed. Once the annealing is completed, the material may be oxidized. Alternatively, the material may be exposed to a silicon gas once the annealing is completed. The deposition, annealing, and either oxidation or silicon gas exposure may all be carried out in the same chamber, without need for removing the wafer from the chamber until all three steps are completed. A semiconductor wafer processing chamber for carrying out such an in-situ construction may include a processing chamber, a showerhead, a wafer support and a rf signal means. The showerhead supplies gases into the processing chamber, while the wafer support supports a wafer in the processing chamber. The rf signal means is coupled to the showerhead and the wafer support for providing a first rf signal to the showerhead and a second rf signal to the wafer support.
Abstract:
A substrate support assembly for supporting a substrate during processing is provided. In one embodiment, a support assembly includes a ceramic body having an embedded heating element and a base plate. The base plate and the ceramic body define a channel therebetween adapted to supply purge gas to a perimeter of a substrate disposed on the support assembly. The base plate is fastened to the body by brazing, adhering, fastening, press fitting or by mating engaging portions of a retention device such as a bayonet fitting.
Abstract:
A plasma etching apparatus includes a worktable disposed in a hermetic process chamber. The worktable has a main surface for placing a wafer thereon, and a sub-surface for placing a focus ring thereon. A cooling mechanism for supplying cold to the main surface and sub-surface is disposed in the worktable. A heat transfer medium made of conductive silicone rubber is interposed between the sub-surface and focus ring. A press mechanism presses the focus ring toward the sub-surface. The heat transfer medium improves thermal conductivity between the sub-surface and focus ring to be higher than in a case with no thermal transfer medium.
Abstract:
In relatively thick samples for electron microscopy imaging, details of interest are often located in the bulk of the sample, so that they cannot be directly imaged in the form of a SEM image. According to the invention, so as to expose the cross-section containing the details of interest, the frozen sample is subjected to ion milling, in such a manner that the desired cross-section is exposed. Thereafter, the exposed cross-section is further eroded in a controlled manner via sublimation, whereby the detail of interest is approached in a very accurate manner, and its fine details become visible. Hereafter, the finally desired SEM image can be made. By repetition of this process, a large number of successive cross-sections can be imaged, so that a spatial representation of the sample is obtained.
Abstract:
An apparatus and method for cathodic magnetron sputtering of a coating onto a temperature-sensitive substrate is disclosed. The apparatus consists of a vacuum chamber having a work-supporting station and a magnetron sputtering target opposite the work-supporting station. The apparatus produces a magnetic field to contain, in an oval pattern, a gas plasma cloud which ejects target material toward the work-supporting station. The temperature of the substrate being coated is controlled by positioning the cooling anode within the sputtering chamber. The position of the cooling anode is adjusted relative to the cathode target to capture primary electrons that would otherwise impinge the substrate. It is in a position with respect to the cathode that does not interfere with the magnetic field.
Abstract:
An electrostatic chuck 108 is provided on a lower electrode 106 provided inside a processing chamber 102 of an etching apparatus 100, and a conductive inner ring body 112a and an insulating outer ring body 112b are encompassing the outer edges of a wafer W mounted on the chuck surface. The temperatures of the wafer W and the inner and outer ring bodies 112a and 112b are detected by first˜third temperature sensors 142, 144 and 146. A controller 140 controls the pressure levels of He supplied to the space between the center of the wafer W and the electrostatic chuck 108 via first gas outlet ducts 114 and to the space between the outer edges of the wafer W and the electrostatic chuck 108 via second gas outlet ducts 116 and the quantity of heat generated by a heater 148 inside the outer ring body 112b based upon the information on the temperatures thus detected so that the temperatures of the wafer W and the inner ring body 112a are set roughly equal to each other.
Abstract:
Novel methods and devices for nanomachining a desired pattern on a surface of a conductive workpiece are disclosed. In one aspect, the method comprises using an electron beam emitted from one or more nanotubes to evaporate nanoscale quantities of material from the workpiece surface. The surface of the workpiece to be machined may be excited to a threshold energy to reduce the amount of power required to be emitted by the nanotube. In another aspect, a device is described for nanomachining a desired pattern on a surface of a conductive workpiece, comprising a vessel capable of sustaining a vacuum, a leveling support, a nanopositioning stage, and a laser for heating the workpiece. A nanotool is provided comprising at least one nanotube supported on an electrically conductive base, adapted to emit an electron beam for evaporating material from an electrically conductive workpiece.
Abstract:
A plasma processing apparatus includes a vacuum chamber for evacuating gas therefrom, for introducing reaction gas therein, and for generating plasma therein through high frequency power application. A substrate hold stage is set in the vacuum chamber, with the substrate hold stage including a set face having a recessed part, wherein a rear face of a substrate to be subjected to plasma processing is held on the set face.
Abstract:
A lithographic projection device according to the present invention includes a first radiation source which supplies a projection beam of radiation of a first type, a mask table for holding a mask, a substrate table for holding a substrate and a projection system for imaging a portion of the mask, irradiated by the projection beam, onto a target portion of the substrate. Further, a second radiation source supplies a second beam of radiation of a second type which can be directed onto the substrate and a controller which patterns the second beam of radiation so that it impinges on the substrate in a particular pattern. The two radiation beams are controlled such that the sum of the fluxes of the radiation of the first and second type on the substrate causes an elevation of the substrate temperature which is substantially constant across at least a given area of the substrate.
Abstract:
The invention provides a system and apparatus by which a workpiece pad is supplied to support workpieces being implanted in a rotating or spinning batch implanter process disk. The workpiece pad provides reduced surface adhesion forces and sufficient heat transfer from the workpieces to the process disk, and furthermore reduces particle generation and contamination of the workpiece from the workpiece pad. The workpiece pad furthermore comprises an ordered array of micro-structures. In addition, the invention includes a method of forming a workpiece pad comprising an ordered array of micro-structures.