Abstract:
A surface treatment device for applying a surface treatment to an inner surface of a hollow engine shaft includes a supply of a surface treatment agent and an elongated rod extending from a proximal end to a distal end. The elongated rod has an inner passage extending from the proximal end to the distal end. The proximal end has an inlet fluidly coupled to the supply of the surface treatment agent. The inner passage terminates at an outlet at the distal end. The elongated rod is insertable inside the hollow engine shaft. An applicator is disposed at the distal end of the elongated rod adjacent the outlet. The applicator is engageable with the inner surface of the hollow engine shaft for applying the surface treatment agent from the supply of the surface treatment agent to the inner surface of the hollow engine shaft.
Abstract:
An automated system for performing multiple operations on one or more weld joints of a pipe string includes a main controller including a user interface; and a first robotic device that is in communication with the main controller and is configured to controllably travel inside of the pipe string and detect and uniquely identify each weld joint within the pipe string based on a vision-based weld detection module that is executed on a first onboard computer. The vision-based weld detection module provides at least one of: (1) images captured within the pipe string and (2) a live video feed within the pipe string that is displayed on the user interface for allowing a user to review and approve detection of the weld joint, whereupon once the user confirms the approval, the first robotic device automatically positions itself a predefined distance from the detected weld joint and automatically begins to perform at least one operation on the weld joint.
Abstract:
Disclosed herein is a tool for holding a spray painting instrument, such as a painting gun for painting an internal surface of a pipe. In particular, the inventive tool is ideal for painting the interior of curves and angles in a pipe and is capable of moving through and uniformly painting up to 90 degree angles of pipes or hollow tubes. The tool has a hollow central tube for carrying a spray-painting gun and at least two projections extending outwardly from an outer surface of the hollow tube. A retracting arm assembly is provided on each projection. Each retracting arm assembly includes first and second retracting arms and a corresponding force exertion mechanism. In operation, when the tool is inserted inside the pipe, each retracting arm touches the internal surface of the pipe due to an outward force exerted thereon. The tool is movable inside the pipe and adjusts automatically to different pipe diameters. The tool can be used manually or in an automated fashion to push and pull the paint gun and paint the interior of a pipe.
Abstract:
An air purging coater apparatus is disclosed for purging mixed components from the apparatus disposed in a pipeline at a pipeline site. The apparatus includes a remote-controlled apparatus for insertion within the pipeline at the pipeline site. The remote-controlled apparatus includes a drive for controllably moving the remote-controlled apparatus internally within the pipeline. A high-pressure mixing device defines a first and second inlet controllably connected to a pressurized and further pressurized source respectively of a first and second component. The high-pressure mixing device defines a high-pressure mixing chamber connected to the first and the second inlets for mixing together the first and second components. The high-pressure mixing device defines an outlet connected to the high-pressure mixing chamber for receiving a flow therethrough of the mixed components. A spin head defines an internal conical surface and a baffle so that the mixed components are applied to an inside surface of the pipeline. The high-pressure mixing device is controllably movable from an application disposition thereof to a purging disposition. In the purging disposition, the flow of the mixed components is terminated and a source of pressurized air flows into and through the first and second inlets and the high-pressure mixing chamber and the outlet for purging any residual mixed components from the high-pressure mixing device thereby avoiding any need for the use of a potentially hazardous solvent.