Abstract:
A system for use in maintaining a pipe includes a motorized apparatus including a body assembly and at least one maintenance device. The at least one maintenance device includes a sprayer, a heater, and an infrared sensor. The system includes at least one controller configured to apply the at least one coating material to the interior surface of the pipe at a work location using the sprayer, heat the interior surface of the pipe at the work location using the heater to begin a cure of the at least one coating material, generate one or more infrared images of the work location using the infrared sensor while using the heater to cure the at least one coating material, and perform a non-destructive evaluation (NDE) of the work location based on the one or more infrared images.
Abstract:
Systems and methods for automated repair and maintenance operations on a railroad track comprise a work head that is automatically moved over the railroad track according to a predetermined pattern, such as the movement of an applicator for tie plugging compound according to a predetermined pattern of spike holes. The automated repair and maintenance operations may be coupled to systems and methods for automatically detecting a feature on a railroad track that comprise two or more distance measurement sensors that travel over the railroad track. Features on the railroad track are detected where the distance measured by each sensor falls within two different predetermined distance ranges.
Abstract:
The invention relates to a rotating cleaner (1) comprising a housing (2) which has a cavity (10) and an inlet (9) which is connectable to a fluid supply line, a shaft (11) extending in sections into the cavity (10), a sprayer body (3) which has an interior space (14), said sprayer body (3) being connected non-rotatably with the shaft (11) and including an outlet opening (6), and further comprising a bearing (16) for rotatably supporting the shaft (11) in the housing (2). To improve the spray pattern, it is proposed that the fluid manifold (13; 13′) designed for uniform distribution of the fluid is arranged in the interior space (14).
Abstract:
Provided is a defect detection device capable of measuring the volume of surface defects. The defect detection device includes: an imaging device configured to image an image of an inspection object; a binarization processing unit configured to subject the image to first and second binarization processing by use of different first and second binarization thresholds, so as to calculate first and second sizes for an identical defect in the image; a ratio calculation unit configured to calculate a first ratio of the second size to the first size; and a depth determination unit configured to determine a depth of the defect depending on the first ratio.
Abstract:
A portable delivery system for delivering a multiple part coating composition for in situ coating an internal pipeline surface comprises a housing including a controller, at least two composition containers, a first hose, a hose delivery system, a pump, and at least two mass flow meters. The composition containers contain differing compositions, and each container includes a composition depth monitoring apparatus. The first hose comprises at least two additional hoses, where two of the additional hoses each deliver one of the compositions to a composition applicator. The hose delivery system stores and delivers the first hose to the pipeline, and the pump is coupled to the composition containers and the first hose. The mass flow meters are each coupled to a pump outlet corresponding to an outlet of the respective first or second composition container.
Abstract:
Methods and apparatus are disclosed for filling a therapeutic substance or drug within a hollow wire that forms a stent. The stent is placed within a chamber housing a fluid drug formulation. During filling, the chamber is maintained at or near the vapor-liquid equilibrium of the solvent of the fluid drug formulation. To fill the stent, a portion of the stent is placed into contact with the fluid drug formulation until a lumenal space defined by the hollow wire is filled with the fluid drug formulation via capillary action. After filling is complete, the stent is retracted such that the stent is no longer in contact with the fluid drug formulation. The solvent vapor pressure within the chamber is reduced to evaporate a solvent of the fluid drug formulation. A wicking means may control transfer of the fluid drug formulation into the stent.
Abstract:
An in-situ applicator for applying a composition in a pipe comprises a flow diverter configured to receive a composition and eject the composition from at least one outlet. The applicator also comprises a hollow conical body having a narrow end, a broad end, and an interior surface configured to receive the composition ejected from the flow diverter. The conical body also has a plurality of holes forming a band that wraps circumferentially around the conical body which defines a flow region on the interior surface between the band and the narrow end. The band includes first holes adjacent to the flow region where each of the first holes has a first average diameter and second holes disposed between the first holes and the broad end, each of the second holes having an average diameter greater than the first diameter.
Abstract:
A coating device for coating an inside of a hollow body with an atomized fluid has at least one atomizing tube enclosing an atomizing channel. A pressurized propellant gas for atomizing an unatomized fluid can be introduced into the atomizing tube. The atomizing tube has at least one outlet opening and further has at least one hollow needle having a discharge opening for the unatomized fluid. The at least one hollow needle interacts with the atomizing channel and is arranged essentially coaxially thereto. The atomizing tube and the hollow needle form a Venturi arrangement.
Abstract:
A method of applying a coating to a glass sleeve with an inner surface and an outer surface, the glass sleeve configured as a part of a solar-receiver tube, is provided. Thereby, the coating is solely applied to one of the surfaces of the glass sleeve. A method of fixing such glass sleeve in an interior of a coating tank, such coating tank and a fixing arrangement for fixing such glass sleeve in an interior of a coating tank, is also provided.
Abstract:
This is a photoconductor and dispenser assembly and system. The photoconductor is in a tubular form so as to accept a tubular formed dispenser within its hollow portion. The dispenser will coat within this hollow portion a uniform coating of an acoustical dampening material. This material will dull any sound produced by the photoconductive marking system. The assembly is the tube having in its hollow portion this dispenser. The dispenser fits tightly but movably within the hollow portion.