Abstract:
A calibration method for calibrating an ambient light sensor (ALS) includes: testing the ALS by a plurality of test brightness inputs, and deriving a plurality of test ALS outputs respectively corresponding to the test brightness inputs; converting at least the test ALS outputs from an analog manner into a digital manner to generate a plurality of test ALS output values respectively; storing a test result including at least the test ALS output values; and calibrating a brightness value corresponding to a normal ALS output value according to information stored in the test result, thereby generating a calibrated brightness value.
Abstract:
An ultraviolet light monitoring system includes first and second electrodes, an evaluation subject film and a power source. The first and second electrodes are opposingly disposed and attract holes which are generated in accordance with irradiation of ultraviolet light. The evaluation subject film is formed in a vicinity of the first and second electrodes, and is a subject of evaluation of damage caused by the irradiation of ultraviolet light. The power source, at times of monitoring of the ultraviolet light, applies a predetermined bias to a series path formed by the first electrode, a gap between the first and second electrodes, and the second electrode.
Abstract:
Method for the fabrication of Haze noise standards having, respectively, an insulating thin layer and a plurality of nano-structures of hemi-spherical form on the insulating thin layer, with the respective standards being fabricated by: the formation on at least one insulating layer of seeds made of a first semi-conductor material by chemical deposition from a first precursor gas for the first semi-conductor material, formation on the insulating layer of nano-structures based on a second semi-conductor material and in the form of hemi-spheres, from stable seeds of the first semi-conductor material, by chemical deposition from a second precursor gas of the second semi-conductor material. The invention also relates to a calibration method using standards obtained by means of such a method.
Abstract:
A test system and method are provided for testing in parallel radiant output of multiple light emitting devices. Generally, the method involves: (i) providing a system having a master, calibrated power meter (CPM), a source transfer standard (STS), and multiple secondary, test site power meters (TSPMs); (ii) determining a relationship between electrical power supplied to the STS and a radiant output therefrom as measured by the CPM; (iii) calibrating the TSPMs using the STS and the relationship between the power supplied to the STS and the radiant output therefrom as determined by the CPM; and (iv) positioning the devices undergoing test on a fixture of the test system and positioning the fixture relative to the TSPMs to test radiant outputs of the devices. Preferably, the TSPMs are calibrated by exposing each to the STS at a known power, determining a difference between the radiant output measured by the CPM and TSPM, using this difference as an offset that is added to the a signal from the TSPM to provide a corrected radiant output for the device under test. Other embodiments are also disclosed.
Abstract:
The present disclosure includes a number of method, medium, and apparatus claims utilized for color sensor performance. One method includes determining performance of a color sensor, which can be performed by measuring a color parameter intensity and reflectance spectral power distribution of a particular type of print medium with a color sensing utility of a print apparatus. The method also can include detecting a magnitude of a difference between the measured color parameter intensity and reflectance spectral power distribution of the particular type of print medium and a predetermined intensity and reflectance spectral power distribution of the color parameter of the particular type of print medium, where the predetermined intensity and reflectance spectral power distribution is stored in memory.
Abstract:
A method is provided in which with respect to an optical detection apparatus including an optical detection unit and a temperature control unit, whether optical signal detection and temperature control are performed accurately, i.e. the performance thereof, can be verified simply with high reliability. With respect to an optical detection apparatus including an optical detection unit for detecting an optical signal of a sample and a temperature control unit for controlling temperature of the sample, the optical signal detection performance and temperature control performance are verified by the following method. First, a standard sample containing a nucleic acid sequence and a strand complementary thereto that have a known optical signal intensity and Tm value is provided, the temperature of the standard sample is increased or decreased with the temperature control unit, and optical signal intensity of the standard sample is measured with the detection unit. On the other hand, the melting temperature of the standard sample is determined from a change in the optical signal intensity accompanying a change in the temperature. The measured optical signal intensity and melting temperature of the standard sample are compared to the known optical signal intensity and melting temperature of the standard sample, respectively, and thereby it is verified whether the optical signal detection performance of the detection unit and the temperature control performance of the temperature control unit are accurate.
Abstract:
A method for measuring brightness uniformity of a panel is disclosed. The method includes steps of: dividing the panel into a plurality of areas, measuring brightness of each area, calculating each area of an average value K the brightness differences between the area and the other adjacent areas, and comparing the value K with a predetermined value. When the value K is greater than the predetermined value, it indicates that the brightness difference between the area and the adjacent areas exceeds a uniformity threshold. When the value K is smaller than the predetermined value, it indicates that the brightness difference between the area and the adjacent areas is below the uniformity threshold. The entire panel is evaluated to ensure accuracy of measuring results.
Abstract:
In an autofocus image sensor, monitoring pixels are disposed adjacent to a pixel array over a length equal to that of the pixel array in each of a standard portion and a reference portion. Signals from the monitoring pixels of both of the standard portion and the reference portion are subjected to arithmetic operation to control accumulation of electric charges. Thus, an error in position detection is minimized.
Abstract:
The description relates to a standard for wavelength and intensity for spectrometers, particularly for calibrating and testing measurement heads in spectrometers which are usable primarily in the near infrared region (NIR) of the spectrum. The standard comprises a holder and a plate body arranged in the holder. The plate body is made of transparent plastic with high strength and dimensional stability over a large temperature range. The plastic has distinct absorption bands throughout the entire NIR range and has a chemical structure and composition ensuring an extensive moisture barrier against water absorption and water release in a reliable and stable manner over time. The plate body advantageously comprises an amorphous, transparent copolymer based on cyclic and/or linear olefins.
Abstract:
A calibration system includes a printer capable of being calibrated and a printable calibration sheet. The printable calibration sheet includes at least one calibration reference segment printed on the sheet and one or more defined printing spaces on the sheet. The at least one calibration reference segment includes one or more pre-selected colorants on the printable sheet. The one or more defined printing spaces are adjacent to the at least one calibration reference segment. The one or more defined printing spaces are arranged to accept printing of a color pattern from a printer under calibration.