Abstract:
An electrode connection structure includes: a first electrode of an electrical circuit; and a second electrode of the electrical circuit that is electrically connected to the first electrode. The first and second electrodes are oppositely disposed in direct or indirect contact with each other. A plated lamination is substantially uniformly formed by plating process from a surface of a contact region and opposed surfaces of the first and second electrodes. A void near the surface of the contact region is filled by formation of the plated lamination. Portions of the plated lamination formed from the opposed surfaces of the first and second electrodes in a region other than the contact region are not joined together.
Abstract:
A mobile robot 1 having a plurality of kinds of moving forms includes a body unit 11 having a front face and a back face, four limb units 12 having a plurality of limb-side drive shafts, and front end tools 13 provided on a front end side of the limb units 12. A base end side of the limb unit 12 is connected to the body unit 11. The four limb units 12 are the same units. The body unit 11 and the four limb units 12 are movable by switching a front face side and a back face side so that a moving operation of the front face side and a moving operation of the back face side are symmetrical across the center of a thickness direction of the body unit 11.
Abstract:
A plating apparatus (1) includes: a holding member (2) that holds a plated object (W); a spacer (4) that is stacked on the holding member (2) via a first seal member (3) in an annular shape surrounding the plated object (W), and has a through portion (45) from which the plated object (W) is exposed and which stores a plating solution; and an anode member (6) that is stacked on the spacer (4) via a second seal member (3) in an annular shape surrounding the through portion (45), and has an anode layer (62) arranged to face the plated object (W) which is exposed from the through portion (45).
Abstract:
A method and a device for condensing a water-soluble organic matter, which can collect a highly concentrated water-soluble organic matter, save energy, and reduce cost of the device by reducing a membrane area.According to the present invention, the permeability ratio of a vapor-permeation separation membrane disposed at least immediately before a final outlet on a non-permeation side in the separation membrane device is lower than those of the other vapor-permeation separation membranes while a hybrid process combining distillation by the distillation column with membrane separation by the separation membrane devices including a plurality of vapor-permeation separation membranes is used and energy saving performance is maintained. Therefore, a highly concentrated and condensed component of a water-soluble organic matter is obtained. In addition, it is possible to reduce a membrane area of the vapor-permeation separation membranes in the whole separation membrane devices and to provide a technology leading to cost reduction.
Abstract:
An electrochemical analysis apparatus includes a power controller, a Fourier transform unit, and a calculating unit. The power controller generates a rectangular-wave signal, a first frequency F and a duty ratio D, and applies the signal to an electrochemical cell. The Fourier transform unit performs Fourier transform on first data obtained by sampling a response signal of the cell to calculate a first frequency characteristic including a component of a second frequency integer times as high as the first frequency. The Fourier transform unit performs Fourier transform on second data, a sampling start time of which is (1/F)·D (seconds) different from the first data from which the first frequency characteristic is calculated, to calculate a second frequency characteristic including a component of the second frequency. The calculating unit calculates an impedance characteristic of the cell based on the first frequency characteristic and the second frequency characteristic.
Abstract:
A photoelectric element includes a first electrode; and a second electrode positioned so as to face the first electrode; and a semiconductor disposed on a face of the first electrode, the face being positioned so as to face the second electrode; and a photosensitizer carried on the semiconductor; and a first charge-transport layer interposed between the first electrode and the second electrode; and a second charge-transport layer interposed between the first charge-transport layer and the second electrode. The first charge-transport layer and the second charge-transport layer contain different oxidation-reduction materials. The oxidation-reduction material in the first charge-transport layer has an oxidation-reduction potential higher than an oxidation-reduction potential of the oxidation-reduction material in the second charge-transport layer.
Abstract:
It is an object of the present invention to provide a power semiconductor device, which is capable of being operable regardless of thermal stress generation, reducing a heat generation from wire, securing the reliability of bonding portion when the device is used for dealing with a large amount current and/or under a high temperature atmosphere, a method of manufacturing the device and a bonding wire. In a power semiconductor device in which a metal electrode (die electrode 3) on a power semiconductor die 2 and another metal electrode (connection electrode 4) are connected by metal wire 5 using wedge bonding connection, the metal wire is Ag or Ag alloy wire of which diameter is greater than 50 μm and not greater than 2 mm and the die 3 has thereon one or more metal and/or alloy layers, each of the layer(s) being 50 Å or more in thickness and a metal for the layer is selected from Ni, Cr, Cu, Pd, V, Ti, Pt, Zn, Ag, Au, W and Al.
Abstract:
The present invention provides an electrode composite that has a reaction interface with a large area and can constitute a photoelectric element having high electron transport properties between the reaction interface and the electrode. The electrode composite of the present invention includes a first electrode and a conductive particle layer stacked on the first electrode. The conductive particle layer includes conductive particles containing acicular particles. The conductive particle layer has a three-dimensional porous network structure that is formed by the interconnection of the conductive particles. The three-dimensional network structure is joined to the first electrode. The conductive particle layer contains pores having a pore size of 50 nm or more in a total volume of 50% or more based on the volume of all pores in the conductive particle layer.
Abstract:
A method for producing a silicon oxide-based ceramic membrane on a surface of a porous substrate from a silica source and an aqueous alkaline solution (or an aqueous alkaline solution of an alumina source) by a gas phase reaction comprises the step of heating the silica source and the aqueous alkaline solution (or the aqueous alkaline solution of an alumina source) in an airtight vessel without mixing them.
Abstract:
A method of manufacturing ULSI wiring in which wiring layers are separately formed via a diffusion prevention layer with an insulating interlayer portion made of SiO2. The method comprises the steps of treating, with a silane compound, an SiO2 surface on which the insulating interlayer portion is to be formed, performing catalyzation with an aqueous solution containing a palladium compound, forming the diffusion prevention layer by electroless plating, and then forming the wiring layer on this diffusion prevention layer. Furthermore, a capping layer is formed on the wiring layer by electroless plating. In consequence, the diffusion prevention layer having good adhesive properties can all be formed through a simple process by wet processes, and further, the wiring layer can directly be formed on this diffusion prevention layer by the wet process. In addition, the capping layer can directly be formed on this wiring layer by the electroless plating.