Abstract:
A coloring apparatus for coloring an electric wire colors the wire spouts a liquid coloring agent, including a coloring material and a solvent, toward an outer surface of the wire with a specific amount thereof at a time. The coloring apparatus includes a coloring agent supply source for receiving the coloring agent, a coloring nozzle and a heater. The coloring nozzle spouts the coloring agent of the coloring agent supply source. The heater includes a heating bath and a hot air inlet. The heating bath receives the coloring nozzle. The heating bath allows the coloring nozzle to spout the coloring agent. The hot air inlet supplies hot air into the heating bath to heat the coloring agent supply source. The heater heats the coloring agent to a range lower than a boiling point of the solvent by the hot air inlet supplying the hot air into the heating bath.
Abstract:
An apparatus and method of color tuning a light emitting display are provided. The apparatus includes a source of a mixture of a compressed fluid solvent and an organic material. A discharge device is positioned in fluid communication with the source of the mixture of the compressed fluid and the organic material. A condition controlling device is positioned in fluid communication between the source and the discharge device. The method includes providing a substrate, providing a first addressing electrode on the substrate, controllably depositing an organic nanomorphic material over the first addressing electrode, and providing a second addressing electrode over the organic nanomorphic material.
Abstract:
A fuel cell component with surfaces having improved lyophilicity so that liquid on the component adheres closely to the surface in relatively flat droplets or sheets. The lyophilic surfaces may be formed by cold plasma or ultraviolet light treatment of the component. The lyophilic surfaces may be selectively provided on critical areas of the component, such as for example on flow channel wall surfaces of bipolar plates and membrane electrode assemblies, thereby inhibiting liquid blocking of the flow channels during operation of the fuel cell.
Abstract:
A magnetic recording medium having high C/N ratio characteristics particularly in a short wavelength range and capable of attaining a further higher-density recording as a magnetic recording tape produced by forming a magnetic layer by a vapor deposition method and other magnetic recording media of the next generation and a method of producing the same, wherein a magnetic layer is formed by a vapor deposition method on a nonmagnetic supporting body made of a polymer substrate, which has a configuration of comprising a nonmagnetic supporting body, an under layer formed on the nonmagnetic supporting body, containing Co and O and having an atomic ratio of O/Co of 0.4 or more and a magnetic layer containing Co and O, wherein the film thickness of the under layer is made 50 nm or less and the maximum incident angle is made 70null or less in the vapor deposition method.
Abstract:
Disclosed are layered groupings and methods for constructing digital circuitry, such as memory known as Permanent Inexpensive Rugged Memory (PIRM) cross point arrays which can be produced on flexible substrates by patterning and curing through the use of a transparent embossing tool.
Abstract:
A method for manufacturing a display device of the present invention comprises the steps of forming insulating barriers which surround electrode and project upward from the surface of the electrode, and bringing the whole substrate into contact with water after applying the solution including an acceptor in wet process. According to the present invention, an organic conductive layer can be uniformly formed over a substrate in wet process even if the substrate does not have a smooth surface and has distribution in wettability of the surface.
Abstract:
The invention is a method for making an electrode by depositing nano-particles on an object by forming a nano-particle dispersion, coating an object with the nano-particle dispersion thereby disposing nano-particles from the nano-particle dispersion on the object forming an electric conductor, removing at least a portion of the carrier, forming an electrical circuit using the electric conductor such that electric current flows in at least a portion of a medium using the electric conductor, and connecting the electrical circuit to a load, wherein the nano-particle dispersion has between 0.05 wt % and 10 wt % of a charged soluble polymer having a molecular weight of less than 25,000 amu, between 0.5 wt % and 10 wt % of a metal component, and balance of a carrier.
Abstract:
An ion source impinging on the surface of the substrate to be coated is used to enhance a MOCVD, PVD or other process for the preparation of superconducting materials.
Abstract:
The present invention is a high-throughput, ultraviolet (UV) assisted metalorganic chemical vapor deposition (MOCVD) system for the manufacture of HTS-coated tapes. The UV-assisted MOCVD system of the present invention includes a UV source that irradiates the deposition zone and improves the thin film growth rate. The MOCVD system further enhances the excitation of the precursor vapors and utilizes an atmosphere of monatomic oxygen (O) rather than the more conventional diatomic oxygen (O2) in order to optimize reaction kinetics and thereby increase the thin film growth rate. In an alternate embodiment, a microwave plasma injector is substituted for the UV source.
Abstract:
The invention provides a system and methods for manufacturing an optical member, such as a color filter, using a scanning ink-jet head, where all nozzles of the ink-jet head precisely scan formation regions of pixels. In accordance with the invention, the accuracy of discharge position of ink from each nozzle is increased, the utilization of the nozzle (printing efficiency) is heightened, variations in color from pixel to pixel are controlled, and optical characteristics of an optical member is thus made uniform in plan view. In the method for manufacturing a color filter, a plurality ink-jet heads 22, each head having a plurality of nozzles 27, performs a main scan and a sub scan. Further, in accordance with the invention, if W represent the spacing between two closest nozzles at the closest ends of the two adjacent ink-jet heads 22 with one nozzle in one head 22 and the other nozzle in the other head 22, and D represent a constant layout pitch D of the nozzles 27, then the following equation holds: WnullmD (m is an integer of 2 or larger). Additionally, if P represent a sub scanning motion pitch of the head 22, then the following equation holds: PnullnD (n is an integer of 1 or larger).