Abstract:
In the formation of multilevel LIGA microstructures, a preformed sheet of photoresist material, such as polymethylmethacrylate (PMMA) is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the exposed photoresist material. A first microstructure is then formed by electroplating metal into the areas from which the photoresist has been removed. Additional levels of microstructure are added to the initial microstructure by covering the first microstructure with a conductive polymer, machining the conductive polymer layer to reveal the surface of the first microstructure, sealing the conductive polymer and surface of the first microstructure with a metal layer, and then forming the second level of structure on top of the first level structure. In such a manner, multiple layers of microstructure can be built up to allow complex cantilevered microstructures to be formed.
Abstract:
Providing an acceleration sensor in which a base portion and a cap portion are bonded to each other and a sensor portion is sealed off between these two, and which has an improved bonding strength between the base portion and the cap portion. A sensor portion and a frame portion surrounding a periphery of the sensor portion are disposed on a semiconductor substrate. A base portion is comprised, where a diffusion preventing layer and a non-doped polycrystalline silicon layer are stacked one atop the other on the frame portion. A cap portion is comprised, where a nickel layer is formed on a base unit. The non-doped polycrystalline silicon layer of the base portion and the nickel layer of the cap portion are bonded to each other by eutectic bonding.
Abstract:
MEMS Device having an Actuator with Curved Electrodes. According to one embodiment of the present invention, an actuator is provided for moving an actuating device linearly. The actuator includes a substrate having a planar surface and an actuating device movable in a linear direction relative to the substrate. The actuator includes at least one electrode beam attached to the actuating device and having an end attached to the substrate. The electrode beam is flexible between the actuating device and the end of the electrode beam attached to the substrate. Furthermore, the actuator includes at least one electrode attached to the substrate. The electrode has a curved surface aligned in a position adjacent the length of the electrode beam, whereby the actuating device is movable in its substantially linear direction as the electrode beam moves in a curved fashion corresponding substantially to the curved surface of the electrode.
Abstract:
A MEMS device and method of making same is disclosed. In one embodiment, a micro-switch includes a base assembly comprising a movable structure bearing a contact pad. The base assembly is wafer-scale bonded to a lid assembly comprising an activator and a signal path. The movable structure moves within a sealed cavity formed during the bonding process. The signal path includes an input line and an output line separated by a gap, which prevents signals from propagating through the micro-switch when the switch is deactivated. In operation, a signal is launched into the signal path. When the micro-switch is activated, a force is established by the actuator, which pulls a portion of the movable structure upwards towards the gap in the signal path, until the contact pad bridges the gap between the input line and output line, allowing the signal to propagate through the micro-switch. Prior to bonding, the MEMS structures are annealed on a first wafer and the conductive traces and other metals are annealed on a second wafer to allow each wafer to be processed separately using different processes, e.g., different annealing temperatures.
Abstract:
Methods for making thin silicon layers suspended over recesses in glass wafers or substrates are disclosed. The suspended silicon wafers can be thin and flat, and can be made using methods not requiring heavy doping or wet chemical etching of the silicon. Devices suitable for production using methods according to the invention include tuning forks, combs, beams, inertial devices, and gyroscopes. One embodiment of the present invention includes providing a thin silicon wafer, and a glass wafer or substrate. Recesses are formed in one surface of the glass wafer, and electrodes are formed in the recesses. The silicon wafer is then bonded to the glass wafer over the recesses. The silicon wafer is them etched to impart the desired suspended or silicon wafer structure. In another embodiment of the present invention, the silicon wafer has a patterned metal layer. The silicon wafer is bonded to the glass wafer, with the patterned metal layer positioned adjacent the recesses in the glass wafer. The silicon wafer is selectively etched down to the metal layer, which serves as an etch stop. The metalized layer can provide sharper feature definition at the silicon-metalization layer interface, and may also serve to seal gasses within the recessed cavities of the glass wafer during the silicon etching process. The metal layer can then be subsequently removed.
Abstract:
A device structure is defined in a single-crystal silicon (SCS) layer separated by an insulator layer, such as an oxide layer, from a handle wafer. The SCS can be attached to the insulator by wafer bonding, and is selectively etched, as by photolithographic patterning and dry etching. A sacrificial oxide layer can be deposited on the etched SCS, on which polysilicon can be deposited. A protective oxide layer is deposited, and CMOS circuitry and sensors are integrated. Silicon microstructures with sensors connected to CMOS circuitry are released. In addition, holes can be etched through the sacrificial oxide layer, sacrificial oxide can be deposited on the etched SCS, polysilicon can be deposited on the sacrificial oxide, PSG can be deposited on the polysilicon layer, which both can then be patterned.
Abstract:
A method is disclosed for forming a micromechanical device. The method includes providing a sacrificial layer on a substrate, providing a first structural layer on the sacrificial layer and removing a portion of the first structural layer in an area intended for a hinge. Then, a second structural layer is provided over the first layer and in the removed area for the hinge. The second layer is preferably deposited directly on the sacrificial layer in this area. Last, a metal layer is deposited and the various layers are patterned to define a micromechanical device having one portion (e.g. a mirror plate) more stiff than another portion (e.g. hinge). Because a portion of the reinforcing layer is removed, there is no overetching into the hinge material. Also, because the metal layer is provided last, materials can be provided at higher temperatures, and the method can be performed in accordance with CMOS foundry rules and thus can be performed in a CMOS foundry.
Abstract:
A method is provided for fabricating a MEMS structure from a silicon-on insulator (SOI) wafer that has been bonded to a support substrate, such as a glass substrate, in order to form silicon components that can be both precisely and repeatedly formed. The SOI wafer includes a handle wafer, an insulating layer disposed on the handle wafer and a silicon layer disposed on the insulating layer. At least one trench is etched through the silicon layer by reactive ion etching. By utilizing the reactive ion etching, the trenches can be precisely defined, such as to within a tolerance of 0.1 to 0.2 microns of a predetermined width. After bonding the support substrate to the silicon layer, the handle wafer is removed, such as by reactive ion etching. Thereafter, the insulating layer is selectively removed, again typically by reactive ion etching, to form the resulting MEMS structure that has a very precise and repeatable size and shape, such as to within a fraction of a micron. As such, a MEMS structure is also provided according to the present invention in which a plurality of silicon components that vary in size by no more than 0.2 microns are bonded to a support substrate, such as to form an array having a plurality of MEMS elements that have the same or substantially similar performance characteristics.
Abstract:
Micro-Mold Shape Deposition Manufacturing (&mgr;-Mold SDM) is a method for fabricating complex, three-dimensional microstructures from layered silicon molds. Silicon wafers are etched using conventional silicon-processing techniques to produce wafers with surface patterns, some of which contain through-etched regions. The wafers are then stacked and bonded together to form a mold, which is filled with part material. In one embodiment, the part material is a ceramic or metallic gelcasting slurry that is poured into the mold and solidified to form a part precursor. The mold is removed, and the precursor is sintered to form the final part. The gelcasting material may also be a polymer or magnetic slurry, in which case sintering is not needed. The mold can also be filled by electroplating a metal into it; if necessary, each layer is filled with metal after being bonded to a previously filled layer. Patterned silicon wafer layers may also be combined with macroscopic wax layers formed by Mold SDM to create macroscopic parts with some microscopic parts or features.
Abstract:
In a method of forming a microchannel and/or microcavity structure by bonding together two elements (1, 2) having opposed plane surfaces of the same or different materials, one or both surfaces having open channels and/or cavities, bonding is effected by applying to one or both element surfaces (1, 2) a thin layer (3) of a solution of a material capable of fusing with and having a lower melting point than that of the material or materials of the two element surfaces (1, 2) in a solvent which substantially does not dissolve the element surface material or materials. The solvent is then removed, and the two elements (1, 2) are brought together and heated to a temperature where the dissolved material is caused to melt but not the element surface material or materials.