Cantilevered multilevel LIGA devices and methods
    151.
    发明授权
    Cantilevered multilevel LIGA devices and methods 有权
    悬臂式多级LIGA装置及方法

    公开(公告)号:US06458263B1

    公开(公告)日:2002-10-01

    申请号:US09677041

    申请日:2000-09-29

    Abstract: In the formation of multilevel LIGA microstructures, a preformed sheet of photoresist material, such as polymethylmethacrylate (PMMA) is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the exposed photoresist material. A first microstructure is then formed by electroplating metal into the areas from which the photoresist has been removed. Additional levels of microstructure are added to the initial microstructure by covering the first microstructure with a conductive polymer, machining the conductive polymer layer to reveal the surface of the first microstructure, sealing the conductive polymer and surface of the first microstructure with a metal layer, and then forming the second level of structure on top of the first level structure. In such a manner, multiple layers of microstructure can be built up to allow complex cantilevered microstructures to be formed.

    Abstract translation: 在形成多层LIGA微观结构时,通过将掩模曝光通过诸如X射线的辐射来形成预成型的光致抗蚀剂材料片,例如聚甲基丙烯酸甲酯(PMMA),并使用显影剂显影以除去曝光的光致抗蚀剂材料。 然后通过将金属电镀到已经从其去除光致抗蚀剂的区域中形成第一微结构。 通过用导电聚合物覆盖第一微结构,加工初始微结构,加工导电聚合物层以露出第一微结构的表面,用金属层密封导电聚合物和第一微结构的表面,并且 然后在第一级结构之上形成第二级结构。 以这种方式,可以建立多层微观结构以允许形成复杂的悬臂微结构。

    Acceleration sensor and method of manufacturing the same
    152.
    发明授权
    Acceleration sensor and method of manufacturing the same 失效
    加速度传感器及其制造方法

    公开(公告)号:US06441450B1

    公开(公告)日:2002-08-27

    申请号:US09832896

    申请日:2001-04-12

    Abstract: Providing an acceleration sensor in which a base portion and a cap portion are bonded to each other and a sensor portion is sealed off between these two, and which has an improved bonding strength between the base portion and the cap portion. A sensor portion and a frame portion surrounding a periphery of the sensor portion are disposed on a semiconductor substrate. A base portion is comprised, where a diffusion preventing layer and a non-doped polycrystalline silicon layer are stacked one atop the other on the frame portion. A cap portion is comprised, where a nickel layer is formed on a base unit. The non-doped polycrystalline silicon layer of the base portion and the nickel layer of the cap portion are bonded to each other by eutectic bonding.

    Abstract translation: 提供一种加速度传感器,其中基部和盖部分彼此接合并且传感器部分在这两者之间被密封,并且其具有改善的基部和盖部之间的接合强度。 传感器部分和围绕传感器部分的周边的框架部分设置在半导体衬底上。 包括基底部分,其中扩散防止层和非掺杂多晶硅层在框架部分上彼此堆叠。 包括盖部分,其中镍层形成在基底单元上。 基部的非掺杂多晶硅层和盖部的镍层通过共晶接合彼此接合。

    MEMS device having an actuator with curved electrodes
    153.
    发明申请
    MEMS device having an actuator with curved electrodes 审中-公开
    MEMS器件具有带弯曲电极的致动器

    公开(公告)号:US20020113281A1

    公开(公告)日:2002-08-22

    申请号:US10025974

    申请日:2001-12-19

    Abstract: MEMS Device having an Actuator with Curved Electrodes. According to one embodiment of the present invention, an actuator is provided for moving an actuating device linearly. The actuator includes a substrate having a planar surface and an actuating device movable in a linear direction relative to the substrate. The actuator includes at least one electrode beam attached to the actuating device and having an end attached to the substrate. The electrode beam is flexible between the actuating device and the end of the electrode beam attached to the substrate. Furthermore, the actuator includes at least one electrode attached to the substrate. The electrode has a curved surface aligned in a position adjacent the length of the electrode beam, whereby the actuating device is movable in its substantially linear direction as the electrode beam moves in a curved fashion corresponding substantially to the curved surface of the electrode.

    Abstract translation: 具有带弯曲电极的致动器的MEMS器件。 根据本发明的一个实施例,提供了用于使致动装置线性移动的致动器。 致动器包括具有平面表面的基板和可相对于基板沿线性方向移动的致动装置。 致动器包括附接到致动装置的至少一个电极束,并且具有连接到基底的一端。 电极束在致动装置和连接到基板的电极束的端部之间是柔性的。 此外,致动器包括附接到基板的至少一个电极。 电极具有与电极束的长度相邻的位置对齐的弯曲表面,由此当电极束以基本上对应于电极的弯曲表面的弯曲方式移动时,致动装置可在其基本线性方向上移动。

    MEMS device with integral packaging
    154.
    发明申请
    MEMS device with integral packaging 审中-公开
    集成封装的MEMS器件

    公开(公告)号:US20020096421A1

    公开(公告)日:2002-07-25

    申请号:US09997671

    申请日:2001-11-28

    Abstract: A MEMS device and method of making same is disclosed. In one embodiment, a micro-switch includes a base assembly comprising a movable structure bearing a contact pad. The base assembly is wafer-scale bonded to a lid assembly comprising an activator and a signal path. The movable structure moves within a sealed cavity formed during the bonding process. The signal path includes an input line and an output line separated by a gap, which prevents signals from propagating through the micro-switch when the switch is deactivated. In operation, a signal is launched into the signal path. When the micro-switch is activated, a force is established by the actuator, which pulls a portion of the movable structure upwards towards the gap in the signal path, until the contact pad bridges the gap between the input line and output line, allowing the signal to propagate through the micro-switch. Prior to bonding, the MEMS structures are annealed on a first wafer and the conductive traces and other metals are annealed on a second wafer to allow each wafer to be processed separately using different processes, e.g., different annealing temperatures.

    Abstract translation: 公开了MEMS器件及其制造方法。 在一个实施例中,微型开关包括基座组件,其包括承载接触垫的可移动结构。 基座组件被晶片刻度结合到包括激活器和信号路径的盖组件。 可移动结构在接合过程中形成的密封空腔内移动。 信号路径包括输入线和由间隙分开的输出线,当开关被去激活时,该线路防止信号通过微型开关传播。 在操作中,信号被发送到信号路径中。 当微动开关被激活时,致动器建立一个力,致动器将可移动结构的一部分朝向信号路径中的间隙向上拉,直到接触垫桥接输入线和输出线之间的间隙,从而允许 信号通过微型开关传播。 在结合之前,MEMS结构在第一晶片上退火,并且导电迹线和其它金属在第二晶片上进行退火,以允许使用不同工艺(例如不同的退火温度)分别对每个晶片进行加工。

    Thin Micromachined Structures
    155.
    发明申请
    Thin Micromachined Structures 有权
    薄微加工结构

    公开(公告)号:US20020081765A1

    公开(公告)日:2002-06-27

    申请号:US09749171

    申请日:2000-12-27

    CPC classification number: B81C1/0015 B81B2201/0228 B81C2201/019

    Abstract: Methods for making thin silicon layers suspended over recesses in glass wafers or substrates are disclosed. The suspended silicon wafers can be thin and flat, and can be made using methods not requiring heavy doping or wet chemical etching of the silicon. Devices suitable for production using methods according to the invention include tuning forks, combs, beams, inertial devices, and gyroscopes. One embodiment of the present invention includes providing a thin silicon wafer, and a glass wafer or substrate. Recesses are formed in one surface of the glass wafer, and electrodes are formed in the recesses. The silicon wafer is then bonded to the glass wafer over the recesses. The silicon wafer is them etched to impart the desired suspended or silicon wafer structure. In another embodiment of the present invention, the silicon wafer has a patterned metal layer. The silicon wafer is bonded to the glass wafer, with the patterned metal layer positioned adjacent the recesses in the glass wafer. The silicon wafer is selectively etched down to the metal layer, which serves as an etch stop. The metalized layer can provide sharper feature definition at the silicon-metalization layer interface, and may also serve to seal gasses within the recessed cavities of the glass wafer during the silicon etching process. The metal layer can then be subsequently removed.

    Abstract translation: 公开了将薄硅层悬浮在玻璃晶片或衬底中的凹槽上的方法。 悬浮的硅晶片可以是薄且平坦的,并且可以使用不需要对硅进行重掺杂或湿化学蚀刻的方法制成。 适用于根据本发明的方法生产的装置包括调谐叉,梳,梁,惯性装置和陀螺仪。 本发明的一个实施例包括提供薄硅晶片和玻璃晶片或基板。 凹部形成在玻璃晶片的一个表面上,电极形成在凹部中。 然后将硅晶片在凹槽上结合到玻璃晶片。 硅晶片被刻蚀以赋予所需的悬浮或硅晶片结构。 在本发明的另一个实施例中,硅晶片具有图案化的金属层。 硅晶片结合到玻璃晶片,图案化金属层位于玻璃晶片中的凹槽附近。 硅晶片被选择性地向下蚀刻到用作蚀刻停止层的金属层。 金属化层可以在硅 - 金属化层界面处提供更清晰的特征定义,并且还可以用于在硅蚀刻工艺期间将气体密封在玻璃晶片的凹陷空腔内。 然后可以随后去除金属层。

    Microelectromechanical structures defined from silicon on insulator wafers
    156.
    发明授权
    Microelectromechanical structures defined from silicon on insulator wafers 有权
    由绝缘体上硅晶片定义的微机电结构

    公开(公告)号:US06362512B1

    公开(公告)日:2002-03-26

    申请号:US09468423

    申请日:1999-12-21

    Abstract: A device structure is defined in a single-crystal silicon (SCS) layer separated by an insulator layer, such as an oxide layer, from a handle wafer. The SCS can be attached to the insulator by wafer bonding, and is selectively etched, as by photolithographic patterning and dry etching. A sacrificial oxide layer can be deposited on the etched SCS, on which polysilicon can be deposited. A protective oxide layer is deposited, and CMOS circuitry and sensors are integrated. Silicon microstructures with sensors connected to CMOS circuitry are released. In addition, holes can be etched through the sacrificial oxide layer, sacrificial oxide can be deposited on the etched SCS, polysilicon can be deposited on the sacrificial oxide, PSG can be deposited on the polysilicon layer, which both can then be patterned.

    Abstract translation: 器件结构被限定在由来自处理晶片的绝缘体层(例如氧化物层)分离的单晶硅(SCS)层中。 SCS可以通过晶片接合连接到绝缘体,并且通过光刻图案和干蚀刻被选择性地蚀刻。 可以在蚀刻的SCS上沉积牺牲氧化物层,在其上沉积多晶硅。 沉积保护性氧化物层,并集成CMOS电路和传感器。 释放了连接到CMOS电路的传感器的硅微结构。 此外,可以通过牺牲氧化物层蚀刻孔,牺牲氧化物可以沉积在蚀刻的SCS上,多晶硅可以沉积在牺牲氧化物上,PSG可以沉积在多晶硅层上,然后可以对其进行图案化。

    Method for forming a micromechanical device
    157.
    发明申请
    Method for forming a micromechanical device 审中-公开
    微机械装置的形成方法

    公开(公告)号:US20010040675A1

    公开(公告)日:2001-11-15

    申请号:US09767632

    申请日:2001-01-22

    Abstract: A method is disclosed for forming a micromechanical device. The method includes providing a sacrificial layer on a substrate, providing a first structural layer on the sacrificial layer and removing a portion of the first structural layer in an area intended for a hinge. Then, a second structural layer is provided over the first layer and in the removed area for the hinge. The second layer is preferably deposited directly on the sacrificial layer in this area. Last, a metal layer is deposited and the various layers are patterned to define a micromechanical device having one portion (e.g. a mirror plate) more stiff than another portion (e.g. hinge). Because a portion of the reinforcing layer is removed, there is no overetching into the hinge material. Also, because the metal layer is provided last, materials can be provided at higher temperatures, and the method can be performed in accordance with CMOS foundry rules and thus can be performed in a CMOS foundry.

    Abstract translation: 公开了一种用于形成微机械装置的方法。 该方法包括在衬底上提供牺牲层,在牺牲层上提供第一结构层,并且去除用于铰链的区域中的第一结构层的一部分。 然后,第二结构层设置在第一层之上和铰链的去除区域中。 第二层优选直接沉积在该区域的牺牲层上。 最后,沉积金属层,并且将各层图案化以限定具有比另一部分(例如铰链)更硬的一部分(例如,镜板)的微机械装置。 由于加强层的一部分被去除,所以不会对铰链材料进行过蚀刻。 此外,由于最后提供金属层,所以可以在更高的温度下提供材料,并且该方法可以根据CMOS铸造规则进行,因此可以在CMOS铸造中进行。

    Precisely defined microelectromechanical structures and associated fabrication methods
    158.
    发明授权
    Precisely defined microelectromechanical structures and associated fabrication methods 失效
    精确定义的微机电结构和相关的制造方法

    公开(公告)号:US06277666B1

    公开(公告)日:2001-08-21

    申请号:US09338962

    申请日:1999-06-24

    Abstract: A method is provided for fabricating a MEMS structure from a silicon-on insulator (SOI) wafer that has been bonded to a support substrate, such as a glass substrate, in order to form silicon components that can be both precisely and repeatedly formed. The SOI wafer includes a handle wafer, an insulating layer disposed on the handle wafer and a silicon layer disposed on the insulating layer. At least one trench is etched through the silicon layer by reactive ion etching. By utilizing the reactive ion etching, the trenches can be precisely defined, such as to within a tolerance of 0.1 to 0.2 microns of a predetermined width. After bonding the support substrate to the silicon layer, the handle wafer is removed, such as by reactive ion etching. Thereafter, the insulating layer is selectively removed, again typically by reactive ion etching, to form the resulting MEMS structure that has a very precise and repeatable size and shape, such as to within a fraction of a micron. As such, a MEMS structure is also provided according to the present invention in which a plurality of silicon components that vary in size by no more than 0.2 microns are bonded to a support substrate, such as to form an array having a plurality of MEMS elements that have the same or substantially similar performance characteristics.

    Abstract translation: 提供了一种用于从已经结合到诸如玻璃基板的支撑基板的硅绝缘体(SOI)晶片上制造MEMS结构的方法,以便形成可以精确地和重复地形成的硅部件。 SOI晶片包括处理晶片,设置在处理晶片上的绝缘层和设置在绝缘层上的硅层。 通过反应离子蚀刻在硅层中蚀刻至少一个沟槽。 通过利用反应离子蚀刻,可以精确地限定沟槽,例如在预定宽度的0.1至0.2微米的公差内。 在将支撑衬底粘合到硅层之后,例如通过反应离子蚀刻去除手柄晶片。 此后,通常通过反应离子蚀刻来选择性地去除绝缘层,以形成具有非常精确且可重复的尺寸和形状(例如在几分之一微米)内的所得MEMS结构。 因此,根据本发明还提供了一种MEMS结构,其中尺寸变化不超过0.2微米的多个硅元件被结合到支撑衬底上,例如形成具有多个MEMS元件的阵列 具有相同或基本相似的性能特征。

    Shape deposition manufacturing of microscopic ceramic and metallic parts using silicon molds
    159.
    发明授权
    Shape deposition manufacturing of microscopic ceramic and metallic parts using silicon molds 失效
    使用硅模具的微观陶瓷和金属部件的形状沉积制造

    公开(公告)号:US06242163B1

    公开(公告)日:2001-06-05

    申请号:US09387328

    申请日:1999-08-31

    CPC classification number: C23F1/00 B81C99/0085 B81C2201/019 B81C2201/034

    Abstract: Micro-Mold Shape Deposition Manufacturing (&mgr;-Mold SDM) is a method for fabricating complex, three-dimensional microstructures from layered silicon molds. Silicon wafers are etched using conventional silicon-processing techniques to produce wafers with surface patterns, some of which contain through-etched regions. The wafers are then stacked and bonded together to form a mold, which is filled with part material. In one embodiment, the part material is a ceramic or metallic gelcasting slurry that is poured into the mold and solidified to form a part precursor. The mold is removed, and the precursor is sintered to form the final part. The gelcasting material may also be a polymer or magnetic slurry, in which case sintering is not needed. The mold can also be filled by electroplating a metal into it; if necessary, each layer is filled with metal after being bonded to a previously filled layer. Patterned silicon wafer layers may also be combined with macroscopic wax layers formed by Mold SDM to create macroscopic parts with some microscopic parts or features.

    Abstract translation: 微模形状沉积制造(mu-Mold SDM)是从分层硅模制造复杂的三维微结构的方法。 使用常规的硅处理技术来蚀刻硅晶片以产生具有表面图案的晶片,其中一些具有贯通蚀刻区域。 然后将晶片堆叠并结合在一起以形成用部件材料填充的模具。 在一个实施例中,部件材料是陶瓷或金属凝胶浇注浆料,其被倒入模具中并固化以形成部件前体。 去除模具,并将前体烧结以形成最终部分。 凝胶浇铸材料也可以是聚合物或磁性浆料,在这种情况下不需要烧结。 模具也可以通过将金属电镀到其中来填充; 如果需要,每层在结合到预先填充的层之后都填充有金属。 图案化的硅晶片层还可以与由模具SDM形成的宏观蜡层组合以产生具有一些微观部件或特征的宏观部件。

Patent Agency Ranking