Abstract:
An optical amplifying fiber including a clad, a first core provided inside the clad and containing Ge, a second core provided inside the first core and containing Er and Al, and a third core provided inside the second core and containing Ge. The second core has a refractive index higher than that of the clad, and the first and third cores have refractive indexes each of which is higher than that of the second core. Since the third core having the high refractive index is provided at a central portion, it is possible to make smaller a mode field diameter and hence to improve a conversion efficiency of pumping light into signal light. Further, since the second core contains Al as an amplification band width increasing element, it is possible to sufficiently ensure a wide amplification band width.
Abstract:
A method that provides a new way to embed rare earth fluorides into silicate (or germania-doped silica) glasses by means of solution chemistry. Embedding rare earth fluorides into a silicate (or germania-doped silica) glass comprises the following steps. First, form a porous silicate core preform. Second, submerge the preform into an aqueous solution of rare earth ions. Third, remove the preform from the solution and wash the outside surfaces of the preform. Fourth, submerge the preform into an aqueous solution of a fluorinating agent to precipitate rare earth trifluorides from the solution and deposit in the pores or on the wall of the preform. This is followed by drying.
Abstract:
A sol-gel method of preparing a powder for use in forming a glass is provided, along with methods of preparing glasses and glass fibers from the powder. The inventive method allows for the incorporation of a wide range of elements and compositions into a homogeneous glass or glass fiber that is substantially free of hydroxide groups. In addition, dopants incorporated into glasses prepared by the inventive method are uniformly distributed throughout the glass structure.
Abstract:
Applicants have determined that much of the nonuniformity in solution doped preforms is due to nonuniformity of the soot layer caused by the high temperature necessary for complete reaction, and that MCVD fabrication using reaction temperature lowering gases such as nitrous oxide (N.sub.2 O) can produce more uniform soot layers. The conventional oxygen/reactant gas mixture presents a very small temperature window in which a uniform silica soot layer can be deposited without sintering. If the temperature in oxygen is too low, SiCl.sub.4 will not react completely and silicon oxychlorides will form. This degrades the soot layer and makes it unusable. If the temperature is too high the soot layer begins to sinter, decreasing the surface area and porosity. Adding a reaction temperature lowering gas lowers the reaction temperature and enables deposition of soot on the tube wall at a temperature substantially lower than the sintering temperature. This results in a more uniform, porous soot layer along the length of the preform and from one preform to another; and, in turn, the greater uniformity permits more uniform solution doping.
Abstract:
The present invention includes an optical fiber amplifier having a core and cladding layer. The core includes Zirconium dioxide (ZrO.sub.2) and a rare earth material. The core may be co-deposited with SiO.sub.2. A co-dopant of Ytterbium (Yb) may also be used. The optical fiber amplifier is well suited for use in the 1300 nm band when pumped with an optical source of appropriate power and frequency.
Abstract:
A manufacturing method for erbium doped silica, having a soot formation process, in which a silica glass soot is deposited on a seed rod for forming a soot preform in a porous state on the seed rod, a dopant impregnation process, wherein the soot preform is impregnated with at least an erbium compound, and a preform formation process, wherein this soot preform impregnated with a dopant is heated and rendered transparent. The dopant impregnation process is provided with an operation in which the soot preform obtained in the soot formation process is dipped in a solution containing an erbium compound, an aluminum compound, and a phosphorus compound; this is then desiccated, and soot preform which is impregnated with the erbium compound, the aluminum compound, and the phosphorus compound is obtained.
Abstract:
An Ar.sup.+ ion laser pumped optical fibre amplifier is provided with an optical fibre having a core which has been solution doped using a solution of an aluminum and an erbium salt.
Abstract:
A method of forming an optical fiber. A solution (12) is prepared in which are dissolved both a ladder siloxane and one or more dopants which are to be incorporated into the final silica or silicate glass. The solution is drawn into the interior of a silica tube (10) and is left as a coating (26) on the inside wall. The solvent is evaporated, and the rigid coating is cured at 150.degree. C. The filling and curing process may be repeated for multiple layers. The cured coating is then oxidized and fused into doped silica. The resultant tube preform is collapsed and drawn into a fiber. The method allows the introduction of nearly arbitrary constituents into the silica, including glass-forming elements and low-level dopants. The core-cladding interface is improved if a layer of glass-forming soot particles (28) is first deposited and the liquid is soaked into and over the soot.
Abstract:
A method of fabricating rare earth doped planar optical waveguides for integrated optical circuits includes introducing a first carrier gas to a heated column of rare earth chelate to create a flow of rare earth chelate vapor in the carrier; introducing a second carrier gas through a silicon precursor to create a flow of silicon precursor vapor in the carrier; submitting the flow of rare earth chelate vapor and the flow of silicon precursor vapor with oxygen and a homogenizing agent to a flame hydrolysis deposition burner to produce a soot of rare earth doped silica; and depositing the soot on a planar substrate; and etching the soot, after consolidation, to define one or more discrete channel waveguides.
Abstract:
Silica intended to form the core of an optical-fibre preform is deposited as an unvitrified soot inside a reaction tube, where a non-aqueous solution of dopant precursor(s) is then introduced without removing the tube from the lathe. The precursor(s) of the dopant(s) are dissolved in an anhydrous organic solvent. The solution containing the dopant precursor(s) is introduced into the reaction tube without removing the tube from the lathe so that the solution covers the whole surface of the deposited soot layer and impregnation of the deposited soot layer occurs.