Abstract:
The present invention relates to radio frequency identification antennae for automatically reading and locating inventory when moved and rotated by an inventory-scanning robot having three dimensions of position mobility.
Abstract:
One or more robots that make exploration and path planning decisions in a previously unknown or unmapped environment based on a map and localization data at least partially generated by human transported perception unit(s). One or more robots that make exploration and path planning decisions in a previously unknown or unmapped environment based on current and past position and velocity information of at least one human. Exploration and navigation recommendations presented to a human based on map and localization information at least partially generated by other humans or robots. A system of humans and robots that generates a map of an environment based data provided from at least one human transported sensor, and at least one robot transported sensor. One or more robots that make navigation, exploration and/or path planning decisions responsive to voice commands that are interpreted taking into consideration map and localization data at least partially generated by human transported perception unit A helmet (vest or other) mounted sensor used to generate map and localization data that is used by robots to make exploration and path planning decisions. A helmet (vest or other) mounted sensor used to generate map and localization data that is used by robots to map and localize themselves within the map.
Abstract:
A method of performing automated operations on a workpiece by at least one autonomous device is provided. The method includes sensing, by a first of the at least one autonomous devices, a guidance pattern positioned on the workpiece along a first path. The method also includes traversing, by the first autonomous device, along the first path by following the sensed guidance pattern, to a first path location that is within a detection distance of a first precision target indicator positioned on the workpiece.
Abstract:
Systems and techniques for automatically obtaining data indicating the locations of wireless devices and physical objects within a region are provided. An autonomous mobile platform may survey a region with a wireless signal strength sensor and/or a physical environment sensor. The signal strength data and the spatial data are used to generate a map that indicates the locations of wireless devices within a region such as a home or office. The map may be automatically generated and/or updated in the course of other operations performed by an autonomous mobile platform.
Abstract:
A system comprising a multi-functional boom subsystem integrated with a holonomic-motion boom base platform. The boom base platform may comprise: Mecanum wheels with independently controlled motors; a pair of sub-platforms coupled by a roll-axis pivot to maintain four-wheel contact with the ground surface; and twist reduction mechanisms to minimize any yaw-axis twisting torque exerted on the roll-axis pivot. A computer with motion control software may be embedded on the boom base platform. The motion control function can be integrated with a real-time tracking system. The motion control computer may have multiple platform motion control modes: (1) a path following mode in which the boom base platform matches the motion path of the surface crawler (i.e., integration with crawler control); (2) a reactive mode in which the boom base platform moves based on the pan and tilt angles of the boom arm; and (3) a collision avoidance mode using sensors distributed around the perimeter of the boom base platform to detect obstacles.
Abstract:
An autonomous search system includes an operation terminal 10 and a mobile search device 11. The operation terminal 10 includes an input unit 21 to which a search object and a predetermined action can be separately input, a terminal-side communication unit 24 that transmits, to the mobile search device 11, object data for the input search object and action data for the input predetermined action, and a terminal-side controller 25 connected to the input unit 21 and the terminal-side communication unit 24. The mobile search device 11 autonomously searches for the search object based on the object data transmitted from the operation terminal 10 and carries out the predetermined action relative to the search object based on the action data transmitted from the operation terminal 10.
Abstract:
A method for measuring and registering 3D coordinates has a 3D scanner measure a first collection of 3D coordinates of points from a first registration position. The 3D scanner collects 2D scan sets as 3D measuring device moves from first to second registration positions. A processor determines first and second translation values and a first rotation value based on collected 2D scan sets. 3D scanner measures a second collection of 3D coordinates of points from second registration position. Processor adjusts the second collection of points relative to first collection of points based at least in part on first and second translation values and first rotation value. Processor identifies a correspondence among registration targets in first and second collection of 3D coordinates, and uses this correspondence to further adjust the relative position and orientation of first and second collection of 3D coordinates.
Abstract:
An apparatus is utilized for measuring a circumference. The apparatus includes a body section, and at least one wheel rotatably attached to the body section. Additionally, at least one vacuum generating device is disposed on the body section, and is configured to generate an effective amount of vacuum between the body section and an adjacent arcuate surface which is sufficient to retain the body section against the arcuate surface. At least one of a reflector and a gap detector may also be affixed to the body section.
Abstract:
An autonomous moving body executes a mode in which an autonomous moving body: outputs a motor control amount from travel commands input by an operator; estimates the position of the autonomous moving body on an environment map, obtains position information of obstacles near the autonomous moving body, associates position information of the obstacles with times that the position information of the obstacles were obtained, stores the same in the storage unit as environment map restoration data, generates a travel schedule, and stores the same in the storage unit. In a replication mode, the autonomous moving body estimates the position of the autonomous moving body on the environment map, obtains position information of the obstacles near the autonomous moving body, reads the environment map restoration data that corresponds to the estimated position of the autonomous moving body, updates the environment map, creates a control amount for the motor, so as to travel on the updated environment map in accordance with the schedule, and inputs the same to the travel unit.
Abstract:
An apparatus for creating a radio map includes a radio signal acquiring unit that acquires information on radio signals between one or more cooperative intelligent robots, a radio environment modeling unit that estimates radio strength for each cell configuring the radio map from the information on radio signals acquired by the radio signal acquiring unit, and a radio map creating unit that classifies a communication region of each cell and models the radio map according to the radio strength for each cell estimated by the radio environment modeling unit.