Abstract:
According to the present invention, data of arbitrary penetration thickness can be easily obtained in carrying our a beam hardening calibration. A center tomographic image reconstructed parallel to a center line of a projection data of a water phantom and an X-ray tube is read from an image data server. The read center tomographic image is two-dimensionally modeled on a circle. A radius and a center coordinate of the circle on which the image is two-dimensionally modeled are used to re-arrange the X-ray tube, the sensor, and the modeled circle. Points of intersection A and B of the re-arranged circle and a path along which the X-rays reach the sensor from the X-ray tube are determined to obtain a penetration thickness of the water phantom based on the points of intersection A and B. Accordingly, in order to determine an attenuation property when the X-rays are penetrated through a subject, a larger quantity of data of an output value of a sensor with respect to the penetration thickness is gathered with ease.
Abstract:
An LED curing light having controlled spectral output. The LED curing light includes two or more LEDs that emit light at different wavelengths and means for selectively and independently controlling the output of each LED as a function of time so as to independently ramp and/or pulse one or more of the LEDs. The LED curing light can be programmed to mimic the light output of a conventional light source so as to, e.g., have a shifting Kelvin rating or warm the curable composition prior to curing it.
Abstract:
The invention is directed to an arrangement for generating intensive radiation based on a plasma, particularly short-wavelength radiation from soft x-ray radiation to extreme ultraviolet (EUV) radiation. The object of the invention is to find a novel possibility for generating radiation generated from plasma in which the individual pulse energy coupled into the plasma and, therefore, the usable radiation output are appreciably increased while retaining the advantages of mass-limited targets. According to the invention, this object is met in that the target generator has a multiple-channel nozzle with a plurality of separate orifices, wherein the orifices generate a plurality of target jets, the excitation radiation for generating plasma being directed simultaneously portion by portion to the target jets.
Abstract:
Method and apparatus for compensating for variations in the output signal of a color sensor due to varying temperature of the color sensor. The color sensor receives light and generates an output signal that is based on the received light. The temperature compensation mechanism measures the temperature of the color sensor and uses the measured temperature to selectively adjust the output signal of the color sensor to generate a compensated output signal that is not dependent on temperature of the color sensor.
Abstract:
A light source device capable of extending the life of a collector mirror and reducing running cost by protecting the collector mirror from debris that is considered harmful to a mirror coating while securing the collection solid angle and collection rate of EUV light. The light source device includes a target supply unit for supplying a material to become the target; a laser unit for generating plasma by applying a laser beam to the target; a collection optical system for collecting the extreme ultra violet light radiating from the plasma and emitting the extreme ultra violet light; and magnetic field generating unit for generating a magnetic field within the collection optical system when supplied with current so as to trap charged particles radiating from the plasma.
Abstract:
In an optical characteristic measuring method for measuring an optical characteristic of a projection optical system (10a), a reticle (9) having a plurality of patterns (TP) is supplied, and scattered light from an aperture is directed to the plurality of patterns (TP), whereby light beams are projected onto the plurality of patterns in mutually different directions, by which images of the plurality of patterns are formed through the projection optical system (10a). Positions of images of the plurality of patterns, respectively, are detected and, by use of the result of detection, the optical characteristic of the projection optical system is detected. This accomplishes an optical characteristic measuring method and a reticle to be used therefor, which are suitable for measuring an optical characteristic of an optical system such as wavefront aberration, for example, at high precision.
Abstract:
Methods of using labeled interfering RNAs to detect and/or quantitate target mRNAs in cells are provided. Related compositions, systems, and kits are also provided. Caged interfering RNAs (e.g., photoactivatable interfering RNAs), methods of using such caged RNAs, and related systems and kits are also provided. Caged RNAs capable of repressing translation of a target mRNA or silencing transcription of a target gene are also provided, along with related methods, systems, and kits. Methods and compositions for introducing RNAs into cells, using RNAs covalently associated with protein transduction domains and/or lipids, are provided. Also provided are methods and compositions for selectively attenuating expression of a target mRNA by controlling expression of an interfering RNA, an RNA capable of initiating translation repression, or an RNA capable of initiating transcriptional silencing.
Abstract:
A light source testing system includes a light source to form an image, an image capturing apparatus capturing the image by a plurality of pixels, and an image processing apparatus calculating a plurality of gray levels of the plurality of pixels to determine a characteristic parameter of the light source.
Abstract:
A passive optical resonator stores optical pulses within a cavity to increase the optical power level of input pulses via resonant reflections without the use of an internal optical gain medium. In one embodiment for a Compton backscattering system, the optical resonator is a passive high finesse optical resonator that includes a mirror that is transmissive to x-rays.
Abstract:
A radiation detector has a main body (1), and a radiation detection probe (2) detachably attached to the distal end of the main body (1). The probe (2) includes a detection unit (3) accommodating a radiation detection element (7), a cap-shaped shield member (6) mounted to the detection unit (3) so as to cover the distal end of the detection unit (3), and a probe cover (4) accommodating the detection unit (3) and the shield member (6). A connector (10) onto which the probe (2) is adapted to be screwed is provided on the distal end of the main body (1). A collimator (6A) for collimating incident radiation is provided on the distal end of the shield member (6).