Method and system for generating time-frequency representation of a continuous signal

    公开(公告)号:US11366012B2

    公开(公告)日:2022-06-21

    申请号:US16583736

    申请日:2019-09-26

    Abstract: A method and a system for generating a time-frequency representation of an aperiodic continuous input signal comprising generating a periodic train of short pulses having a repetition frequency, and sampling the signal temporally using the periodic train of short pulses to obtain a temporally sampled signal, the temporally sampled signal comprising a plurality of sampled copies of the input signal, each sampled copy being spaced in function of the repetition frequency of the periodic train of short pulses. The temporally sampled signal is delayed based on the repetition frequency to obtain a delayed temporally sampled signal comprising a plurality of delayed sampled copies, a spectral representation of a given delayed sampled copy being delayed in function of the repetition frequency. The delayed temporally sampled signal is evaluated over consecutive time slots to obtain, for each consecutive time slot, a respective output signal in the time-frequency domain.

    LIGHT-RECEIVING APPARATUS
    152.
    发明申请

    公开(公告)号:US20220155153A1

    公开(公告)日:2022-05-19

    申请号:US17428408

    申请日:2020-03-06

    Abstract: A light-receiving apparatus (1a) includes a counting unit (11), a setting unit (12), and an acquiring unit (13). The counting unit is configured to measure a detection number of times that represents the number of times incidence of a photon to a light-receiving element has been detected within an exposure period and to output a counted value. The setting unit is configured to set a cycle of updating time information in accordance with an elapsed time during the exposure period. The acquiring unit is configured to acquire the time information indicating a time at which the counted value reaches a threshold before the exposure period elapses.

    Compressed ultrafast imaging velocity interferometer system for any reflector

    公开(公告)号:US11313668B2

    公开(公告)日:2022-04-26

    申请号:US17223379

    申请日:2021-04-06

    Abstract: The present disclosure provides a compressed ultrafast imaging velocity interferometer system for any reflector, comprising a light source and target system, an etalon interference system, a compressed ultrafast imaging system, a timing control system and a data processing system. An imaging device in the traditional imaging velocity interferometer system for any reflector is replaced by a compressed ultrafast imaging system, a compressed ultrafast Photography (CUP) is introduced in an imaging process, multi-frame images, i.e. three-dimensional images for two-dimensional space and one-dimensional time, are reconstructed via a single measurement by a CUP-VISAR two-dimensional ultrafast dynamic image imaging, a complete dynamic process of a two-dimensional interference fringes image is restored, and spatiotemporal evolution information of a shock wave is effectively acquired, improving an imaging performance of the imaging velocity interferometer system for any reflector in dimension, and achieving a goal that could not be achieved before.

    GEODETIC SURVEYING WITH TIME SYNCHRONIZATION

    公开(公告)号:US20220011101A1

    公开(公告)日:2022-01-13

    申请号:US17384053

    申请日:2021-07-23

    Applicant: Trimble AB

    Abstract: The present disclosure provides a method for determining a direction to a geodetic target from a geodetic instrument. The method includes emitting an optical pulse from the geodetic target, capturing a first image and a second image of the geodetic target using a camera arranged at the geodetic instrument, obtaining a difference image between the first image and the second image, and determining a direction to the geodetic target from the geodetic instrument based on the position of the optical pulse in the difference image. The method further includes synchronizing the geodetic instrument and the geodetic target for emitting the optical pulse concurrently with the capturing of the first image and nonconcurrently with the capturing of the second image. The present disclosure also provides a geodetic instrument, a geodetic target and a geodetic surveying system.

    Method and system for measuring transient time width of ultrashort pulse

    公开(公告)号:US11143558B2

    公开(公告)日:2021-10-12

    申请号:US16895550

    申请日:2020-06-08

    Abstract: Provided are a method and a system for measuring a transient time width of an ultrashort pulse in real time. The method includes: performing an interaction of a laser pulse to be measured with a linear chirped pulse in a second-order non-linear medium, to generate a sum-frequency beam, wherein an intensity sag occurs in the chirped pulse after the interaction; performing a time spreading by a time stretching system on the chirped pulse with the intensity sag; detecting the spread chirped pulse with the spread intensity sag by a photoelectric detector, and measuring and recording a time width τ′ of the spread intensity sag by an oscilloscope; and obtaining the transient time width τ of the laser pulse to be measured according to a formula of τ=τ′/M, where M is an amplification coefficient of the time stretching system.

    METHOD AND SYSTEM FOR MEASURING TRANSIENT TIME WIDTH OF ULTRASHORT PULSE

    公开(公告)号:US20210072089A1

    公开(公告)日:2021-03-11

    申请号:US16895550

    申请日:2020-06-08

    Abstract: Provided are a method and a system for measuring a transient time width of an ultrashort pulse in real time. The method includes: performing an interaction of a laser pulse to be measured with a linear chirped pulse in a second-order non-linear medium, to generate a sum-frequency beam, wherein an intensity sag occurs in the chirped pulse after the interaction; performing a time spreading by a time stretching system on the chirped pulse with the intensity sag; detecting the spread chirped pulse with the spread intensity sag by a photoelectric detector, and measuring and recording a time width τ′ of the spread intensity sag by an oscilloscope; and obtaining the transient time width τ of the laser pulse to be measured according to a formula of τ=τ′/M, where M is an amplification coefficient of the time stretching system.

    HIGH-RESOLUTION REAL-TIME TIME-FREQUENCY DOMAIN MEASURING DEVICE AND METHOD FOR ULTRA-SHORT PULSE

    公开(公告)号:US20200378835A1

    公开(公告)日:2020-12-03

    申请号:US16576399

    申请日:2019-09-19

    Abstract: The present disclosure belongs to the field of optical measurement, and relates to a high-resolution real-time time-frequency domain measuring device and method for an ultra-short pulse. The technical problem of how to realize high-resolution real-time measurement of time-frequency domain information of the ultra-short pulse and improve the accuracy and reliability of a measurement result is solved. The measuring device includes a light splitting unit used to split signal light to be measured, a time lens unit used to perform time domain amplification on the signal light to be measured, a dispersion Fourier transform unit used to perform Fourier transform on the signal light to be measured, and a detection unit used to receive and detect measured data. The present disclosure uses the time lens and the dispersion Fourier transform technology to realize the real-time measurement of sub-picosecond transient characteristics of the ultra-short pulse to accurately obtain the time-frequency domain information of the ultra-short pulse, thereby breaking through the capacity limitation to the bandwidth of a traditional oscilloscope, the measuring speed of a spectrometer and the like, and the present disclosure is suitable for femtosecond-grade ultra-short pulses.

Patent Agency Ranking