Abstract:
A plasma display apparatus includes a plasma display panel (PDP), a chassis base secured on a first side to the PDP and having a driving circuit board mounted on a second side, a tower-shaped fixing unit that protrudes above the second side of the chassis base, and a back cover secured to a tower unit of the tower-shaped fixing unit to cover the driving circuit board.
Abstract:
A method of making a semiconductor chip assembly includes providing first and second posts, first and second adhesives, first and second conductive layers and a dielectric base, wherein the first post extends from the dielectric base in a first vertical direction into a first opening in the first adhesive and is aligned with a first aperture in the first conductive layer, the second post extends from the dielectric base in a second vertical direction into a second opening in the second adhesive and is aligned with a second aperture in the second conductive layer and the dielectric base is sandwiched between and extends laterally from the posts, then flowing the first adhesive in the first vertical direction and the second adhesive in the second vertical direction, solidifying the adhesives, then providing a conductive trace that includes a pad, a terminal and selected portions of the conductive layers, wherein the pad extends beyond the dielectric base in the first vertical direction and the terminal extends beyond the dielectric base in the second vertical direction, providing a heat spreader that includes the posts and the dielectric base, then mounting a semiconductor device on the first post, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A method of making a semiconductor chip assembly includes providing a post and a base, mounting an adhesive on the base including inserting the post into an opening in the adhesive, mounting a conductive layer on the adhesive including aligning the post with an aperture in the conductive layer, then flowing the adhesive into and upward in a gap located in the aperture between the post and the conductive layer, solidifying the adhesive, then providing a conductive trace that includes a pad, a terminal and a selected portion of the conductive layer, mounting a semiconductor device on a heat spreader that includes the post and the base, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
The electronic control device includes: a printed circuit board; a heat-generating member having a plurality of legs which are mounted on the printed circuit board by connections between the legs and the printed circuit board; and a casing which radiates heat that is transferred from the heat-generating member, wherein: the legs are connected via press-fit connections with the printed circuit board.
Abstract:
A method of making a semiconductor chip assembly includes providing a post and a base, mounting an adhesive on the base including inserting the post through an opening in the adhesive, mounting a substrate on the adhesive including inserting the post into an aperture in the substrate to form a gap in the aperture between the post and the substrate, then flowing the adhesive into and upward in the gap, solidifying the adhesive, then mounting a semiconductor device on a heat spreader that includes the post and the base, electrically connecting the semiconductor device to the substrate and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A method of making a semiconductor chip assembly includes providing a post and a base, mounting an adhesive on the base including inserting the post through an opening in the adhesive, mounting a substrate on the adhesive including inserting the post into an aperture in the substrate to form a gap in the aperture between the post and the substrate, then flowing the adhesive into and upward in the gap, solidifying the adhesive, then mounting a semiconductor device on a heat spreader that includes the post and the base, electrically connecting the semiconductor device to the substrate and thermally connecting the semiconductor device to the heat spreader. The substrate includes first and second conductive layers and a dielectric layer therebetween and provides horizontal signal routing between a pad and a terminal at the first conductive layer.
Abstract:
A method of making a semiconductor chip assembly includes providing a post and a base that include a copper surface layer and an aluminum core, mounting an adhesive on the base including inserting the post into an opening in the adhesive, mounting a conductive layer on the adhesive including aligning the post with an aperture in the conductive layer, then flowing the adhesive into and upward in a gap located in the aperture between the post and the conductive layer, solidifying the adhesive, then providing a conductive trace that includes a pad, a terminal and a selected portion of the conductive layer, mounting a semiconductor device on a heat spreader that includes the post and the base, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A method of making a semiconductor chip assembly includes providing a post and a base, mounting a first adhesive on the base including inserting the post through an opening in the first adhesive, mounting a conductive layer on the base including aligning the post with an aperture in the conductive layer, providing a conductive trace that includes a pad, a terminal and a selected portion of the conductive layer, then flowing a second adhesive into and downward in a gap between the post and the conductive trace, solidifying the second adhesive, then mounting a semiconductor device on a heat spreader that includes the post and the base, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A method of making a semiconductor chip assembly includes providing a post and a base, mounting a second adhesive on the base, mounting a substrate with a conductive pattern on the second adhesive, mounting a first adhesive on the substrate and mounting a conductive layer on the first adhesive, then flowing the first adhesive upward between the post and the conductive layer and flowing the second adhesive upward between the post and the substrate, solidifying the adhesives, then providing a conductive trace that includes a pad, a terminal, the conductive pattern, first and second vias and a selected portion of the conductive layer, mounting a semiconductor device on the post, wherein a heat spreader includes the post and the base, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace, a substrate and an adhesive. The heat spreader includes a post and a base. The conductive trace includes a pad, a terminal, a conductive pattern and first and second vias. The substrate includes the conductive pattern and a dielectric layer. The semiconductor device is electrically connected to the conductive trace and thermally connected to the heat spreader. The post extends upwardly from the base into an opening in the adhesive and an aperture in the substrate, and the base extends laterally from the post. The conductive trace provides signal routing between the pad and the terminal using the conductive pattern and the vias.