Abstract:
A method of lining an inner surface of a tubular with a polymer, includes positioning a polymer injecting head within the tubular, forming an annular space between the injecting head and an inner surface of the tubular, injecting polymer through the injecting head into the annular space, and moving the polymer injecting head longitudinally relative to the tubular while injecting polymer.
Abstract:
A pipeline pig for wetting the top inner surface of a pipeline comprising a pig body, one or more circular brushes attached to the pig body, and means for rotating the one or more circular brushes as the pig moves through the pipeline.
Abstract:
An exemplary embodiment provides a form for providing a lining in a pipe. The form includes a body having a leading part and a trailing part, a hole in a leading side of the leading part and a channel in the body communicating with the hole. The body has a diameter at the leading part that is similar to the inner diameter of the pipe to be lined and greater than the diameter at the trailing part. The channel has at least one peripheral opening positioned rearwardly of the leading part of the form at a position to discharge lining material from the channel around the trailing part of the form and onto the interior surface of the pipe. The form is preferably provided with an attachment on the leading side for a tube supplying flowable settable lining material to and through the hole. Another embodiment relates to a method of producing a lining in a pipe which comprises supplying flowable settable lining material to the form while pulling the form through the pipe.
Abstract:
The present invention relates to coating of tubes, and more particularly to a system and method for coating and/or renovating deteriorated or pitted tubes to extend tube life and enhance performance. Using this system and method a thin coating is applied to the interior of a tube such that the coating is uniform in thickness and covers all regions of the tube. The coating material may be selected to minimize changes in heat transfer or may be selected to provide for the change in working fluid within the tube such that the working fluid does not negatively interact with the tube material.
Abstract:
According to the invention, a continuous protective film (20) made of a thermoplastic material is applied to the internal face (68) of the longitudinal weld seam (16) of sheet metal tubes (10). The sheet metal tubes (10) are fed, when the front sides thereof are practically in contact with one another, via the welding arm (12) of a welding machine and an adjacent application arm (18). The continuously fed thermoplastic material is preheated in the area of the application arm (18), is melted, and is directed to an application device (44) after being homogeneously liquefied, said application device (44) applying the liquid plastic in a metered manner across at least the entire width of the weld seam (16). The preheated thermoplastic material (28) is conducted one way along a first contact surface (63) by means of at least one metallic fusible plug (58) in a liquefaction zone (54) having metal contact and is conducted back the other way along a larger second contact surface (65) after being at least partially liquefied. The application device for the continuous protective film (20) is designed in the form of a doctor blade (82) encompassing a reservoir (84) for the liquefied thermoplastic material and a front comb (86) for doctoring off excess conveyed plastic, said comb (86) extending perpendicular to the direction of travel (26).
Abstract:
A technique enables removal of a hydrate plug or other similar plug from a deep water flow line. When the existence of a plug in the deep water flow line is determined, a temporary flow line loop is created to enable remedial procedures. The temporary loop can be created by deploying a spoolable compliant guide and connecting the spoolable compliant guide to the deep water flow line. The connection is made in a manner that enables access to both sides of the unwanted plug.
Abstract:
There is provided a method for lining the internal surface of a pipe having a first open end and a second open end. Said method comprises the steps of introducing a predetermined amount of a resin into the pipe through the first open end thereof, causing the introduced resin to move through the pipe toward the second open end thereof, so as to form a resin lining layer on the internal surface of the pipe, blowing into the pipe a predetermined amount of flake material and causing the flake material to adhere to the surface of the resin lining layer in the pipe, inserting into the pipe a ball-like pig having a predetermined diameter such that an even resin lining layer having a desired uniform thickness may be formed on the internal surface of the pipe, and causing the inserted ball-like pig to move through the pipe along the entire length thereof, thereby embeding the above flake material into the resin lining layer, and forming on the pipe internal surface an even resin lining layer having a desired uniform thickness.
Abstract:
An improved method for impregnating a tubular lining material with a hardenable liquid resin employed in a pipe repair operation by lining the pipe internally with the lining material; the method comprises (a) supplying about the same amounts of the same hardenable liquid resin to two mixing baths, (b) mixing the hardenable liquid resin with an agent to retard hardening and another agent selected from catalyst to facilitate hardening and hardener in one of the mixing baths, and, at the same time, mixing the hardenable liquid resin with a hardening accelerator in another one of the mixing baths, (c) supplying predetermined amounts of these mixtures to a static mixer from the respective mixing baths, (d) mixing these mixtures together in the static mixer to obtain a final mixture of hardenable resin, (e) supplying the final mixture to the tubular lining material, and (f) impregnating the tubular lining material with the final mixture.
Abstract:
Apparatus and method for impregnating and sealing and simultaneously improving the tensile strength of pipeline or conduit buried in the ground. The structure consists of a pair of axially spaced, deformable blocking and sealing devices whose interval is appropriately maintained. One of the blocking devices or "pigs" conveys conduit for introducing air under pressure greater than surrounding hydrostatic pressure on the conduit exterior to the space between the blocking devices to force out water or contaminants and also means for introducing two parts of a compound to impregnate, seal and bond to the interior conduit surface. The structure is also provided with a camera chip on the "pig" which contains the structure for conveying the air and the parts of the compound for observation by remote camera of the operation. The compound is a fast drying compound enabling relatively continuous operation by winching the structure along the conduit. The method to be practiced involves first selectively sealing off a section of conduit, then driving out the contaminating material by increasing the pressure within the sealed off section, and then spray in conical form the compound material and catalyst to quick dry and then axially moving on downstream in the conduit. Fibre or sand may be added to the compound for strength and plugs may be used to seal lateral apertures.
Abstract:
A self-contained trailer mounted proportioning, mixing, injection and collection system enables pipelines to be conveniently coated in-situ using two-component coating compositions moved through the pipeline by a double pig system without solvent vapor exposure, liquid spills or drips, undesired air bubble formation in the coating composition or exposure of operating personnel to pressurized gas, solvent vapors or liquid coating material splash or hazardous flammable or explosive conditions.