Abstract:
Method, apparatus and computer programs are described for compensating for the effect of temperature on the sensitivity of electrostatic ultrasound (US) transducers, particularly as used in an automotive occupancy sensing (AOS) systems for sensing the nature or type of occupant and the location of the occupant with respect to the vehicle interior. The invention permits the AOS to classify the occupancy state of the vehicle from a US echo signal substantially free of the effects of temperature on signal amplitude. A capacitive divider or voltage monitor is employed to measure the capacitance of the transducer. The voltage monitor output is used by the scaling algorithm of a compensator to determine the scaling factor to be applied to the US transducer signal to compensate for the effect of temperature on the transducer sensitivity. Calibration procedures and software are disclosed for determining the coefficients of the scaling algorithm to compensate for temperature effects and also to compensate for installation factors, transducer manufacturing variations, and circuit board effects. The system disclosed is useful for other types of signal processing in addition to temperature compensation of AOS ultrasonic signals, and may be used in other ranging devices such as cameras, golf or binocular range finders, and measuring devices and instruments.
Abstract:
Method, apparatus and computer programs are described for compensating for the effect of temperature on the sensitivity of electrostatic ultrasound (US) transducers, particularly as used in an automotive occupancy sensing (AOS) systems for sensing the nature or type of occupant and the location of the occupant with respect to the vehicle interior. The invention permits the AOS to classify the occupancy state of the vehicle from a US echo signal substantially free of the effects of temperature on signal amplitude. A capacitive divider or voltage monitor is employed to measure the capacitance of the transducer. The voltage monitor output is used by the scaling algorithm of a compensator to determine the scaling factor to be applied to the US transducer signal to compensate for the effect of temperature on the transducer sensitivity. Calibration procedures and software are disclosed for determining the coefficients of the scaling algorithm to compensate for temperature effects and also to compensate for installation factors, transducer manufacturing variations, and circuit board effects. The system disclosed is useful for other types of signal processing in addition to temperature compensation of AOS ultrasonic signals, and may be used in other ranging devices such as cameras, golf or binocular range finders, and measuring devices and instruments.
Abstract:
A notifying device adapted to give notification with both sound and vibration includes a notifying unit 2 which comprises a first vibrator drivable at an audio-frequency with a first drive signal for producing sound waves, and a second vibrator drivable with a second drive signal at a frequency, up to several hundred of hertz, lower than the driving frequency of the first vibrator for producing a perceivable vibration. A notifying signal generating circuit 5 is connected to the unit 2 via a switch 59. The circuit 5 comprises a sound signal generating circuit 57 for producing an intermittent first signal repeating on and off states with a predetermined period, a vibration signal generating circuit 58 for producing an intermittent second signal repeating on and off states with the same period as the first drive signal, and a synchronization circuit 56 for causing the respective circuits 57, 58 to produce the first drive signal and the second drive signal without any overlap between the on periods of these signals. This construction obviates marked increases in the power consumption of the device.
Abstract:
A method and apparatus for electronically driving an ultrasonic acoustic transducer. The transducer is operable in two modes; in a first mode, the lock-in frequency of the transducer is determined; in a second mode, the lock-in frequency determined in the first mode is used to modulate a tone-burst pulse to drive the transducer in an efficient manner. Operating in the first mode, the lock-in frequency is determined by exciting the transducer with a series of tone bursts, where each tone burst comprises an electronic pulse modulated by a tone of one frequency selected from a range of frequencies, and measuring the response of the transducer to each tone burst. In an alternative embodiment, the excitation of the transducer in the first mode is provided by a signal whose frequency is swept over a range. The response of the transducer is sampled at various times during the sweep. The lock-in frequency is chosen by examining the responses and choosing the frequency which gives the best response. Operating in the second mode, the transducer is driven with an electronic tone burst generated by modulating said an electronic pulse with a tone of the determined lock-in frequency.
Abstract:
The remote inspection of seam welds in reactor vessels is improved through the utilization of a pulser network which is inductively isolated from the transducer circuit to which it applies an excitation signal. Through the utilization of a step-up transformer, the pulser network may perform in conjunction with linear d.c. power supplies of lower voltage rating. The inductive coupling between circuits also serves to provide for the positive communication off of switching devices such as SCRs employed for excitation signal triggering. To avoid ground path induced noise, a different ground path is employed for the pulser network as for the transducer circuit. The transducer circuit ground path is that associated with a manipulator and, for example, a reactor vessel itself. Thus, the transducers employed may come in contact with the surface of the vessel being inspected. In similar fashion, an inductive coupling is provided between the transducer circuit and a pre-amplfying receiver circuit. This same inductive coupling may be employed to enhance the impedance match between the FET-based amplification stage and the impedance defining components of the transducer circuit.
Abstract:
An envelope control device for the piezoelectric buzzer of the invention applies voltages changing with time to both surfaces of a sound generator for push-pull operation for generating an electric tone. The sound generator comprises an oscillating plate with a piezoelectric element attached thereto, and in response to a tone signal outputted from a tone signal generating circuit, it generates an electric tone. By the push-pull operations, an envelope is applied to the electric tone generated.
Abstract:
A method of draining parts emerging from hot galvanizing baths using a range of vibration excitation frequencies capable of covering the fundamental frequencies of the parts to be drained. Three different methods are disclosed. According to a first method the vibrations are obtaining by exciting with a narrow band white noise the support for the parts to be drained. According to a second method, the vibrations are produced from a single exciter fed with narrow band white noise and energizing vibrators through the medium of amplifiers. According to a third method, the vibrations are produced by a number of small vibrators each of which furnishes one of the frequencies of the chosen spectrum, whereby said vibrators jointly synthesize the narrow band white noise. Three different means are disclosed for producing vibrations, one where the vibrators are mounted on a false lifting beam, the second where the vibrators are mounted on the lifting beam, and the third where the vibrators are enclosed in a container placed between the lifting beam and the hoisting means.
Abstract:
A battery powered portable acoustic transmitter comprises a plurality of single-pole, momentary contact switches, a type 555 pulse producing integrated circuit chip, and an electroacoustic transducer and matching tuning coil. An RC timing circuit includes a plurality of resistors selectively connectable in the timing circuit by the switches to vary the pulse output frequency. A transistor output circuit amplifies the pulses for driving the transducer. A plurality of diodes supply power to the chip and the transistor output circuit whenever a switch is activated. The integrated circuit chip, resistors, diodes and transistor are part of an active thick film circuit.
Abstract:
An electronic remote control transmitter employs a two transistor cascade oscillator having positive and negative feedback loops. The oscillator voltage is supplied through a switch assembly containing a plurality of momentary contact switches to a pair of voltage dividers supplying signal voltages in predetermined ratios to a two branch circuit in the negative feedback loop. One branch contains an inductor and the second branch a capacitor. Closure of any switch completes the DC circuits for the transistors. Signal voltage is supplied to the branches to produce a minimum amplitude, zero phase shift condition which establishes oscillation at that predetermined frequency. The output of the oscillator is amplified by a third transistor and supplied to an ultrasonic transducer for generating acoustical control signals.
Abstract:
The invention discloses various embodiments of an ultrasonic motor and converter adapted to be used in home or industrial ultrasonic devices. The ultrasonic motor is generally of a piezoelectric material having a removable tip or of a design in which the complete motor is contained in a housing, which housing has electrical contact means adapted to be plugged into an adapter which, in turn, is connected to a converter. The motor is designed such that frequency sensing means is provided therein and the feedback signal is utilized by the converter to adjust itself thereto. The converter includes tuned circuit means tuned to a band including a desired frequency for sustaining the vibration of said motor at the desired frequency.