Abstract:
A wireless-controlled airplane includes a flying unit and an on-ground controller which is connected to the flying unit through a communication section and flies the flying unit. The flying unit includes a body, a drive section installed on the body, a propulsion apparatus which generates a propulsive force when driven by the drive section, a main wing including a plurality of wing elements which are installed so as to be able to move with respect to each other, an opening and closing mechanism which changes the relative positions of the wing elements to change the effective area of the main wing, and a dropping apparatus which selectively holds and drops a load. By changing the effective area of the main wing, the flight speed can be changed, so the capacity and size of the drive section for rotating the propulsion apparatus can be decreased.
Abstract:
An air vehicle assembly and a corresponding method for launching an air vehicle assembly are provided, along with corresponding control systems and methods. The air vehicle assembly may include a plurality of air vehicles releasably joined to one another during a portion of the flight, such as during take-off and landing. By being releasably joined to one another, such as during take-off and landing, the air vehicles can rely upon and assist one another during the vertical take-off and landing while being designed to have a greater range and higher endurance following the transition to forward flight, either while remaining coupled to or following separation from the other air vehicles. By taking into account the states of the other air vehicles, the control system and method also permit the air vehicles of an air vehicle assembly to collaborate.
Abstract:
A micro air vehicle having a bendable wing enabling the micro air vehicle to fly. The bendable wing may be bent downwards so that the wingspan may be reduced for storing the micro air vehicle. The bendable wing may be formed from one or more layers of material, and the wing may have a camber such that a concave surface of the wing faces downward. The wing may substantially resist flexing upwards and may transfer uplift forces to a central body of the micro air vehicle. In addition, the wing may be bent severely downwards by applying a force to tips of the wing. The micro air vehicle is capable of being stored in a small cylindrical tube and may be deployed from the tube by simply releasing the micro air vehicle from the tube.
Abstract:
Hydrogen powered air vehicles that in some embodiments can fly with very long endurance (10 or more days) at altitudes over 60,000 ft carrying payloads of up to 2,000 pounds. Embodiments may include features such as large wingspan relative to fuselage and an all composite or partial composite structure for light weight and strength. The aircraft of the invention use one or more internal combustion engines adapted for hydrogen combustion, each engine driving propellers. The hydrogen fuel is stored on board in containers, located within the fuselage, as a cryogenic liquid, and is vaporized in a heat exchanger before delivery to the internal combustion engine.
Abstract:
A method of launching and retrieving a UAV (Unmanned Aerial Vehicle) (10). The preferred method of launch involves carrying the UAV (10) up to altitude using a parasail (8) similar to that used to carry tourists aloft. The UAV is dropped and picks up enough airspeed in the dive to perform a pull-up into level controlled flight. The preferred method of recovery is for the UAV to fly into and latch onto the parasail tow line (4) or cables hanging off the tow line and then be winched back down to the boat (2).
Abstract:
An air vehicle assembly and a corresponding method for launching an air vehicle assembly are provided, along with corresponding control systems and methods. The air vehicle assembly may include a plurality of air vehicles releasably joined to one another during a portion of the flight, such as during take-off and landing. By being releasably joined to one another, such as during take-off and landing, the air vehicles can rely upon and assist one another during the vertical take-off and landing while being designed to have a greater range and higher endurance following the transition to forward flight, either while remaining coupled to or following separation from the other air vehicles. By taking into account the states of the other air vehicles, the control system and method also permit the air vehicles of an air vehicle assembly to collaborate.
Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be launched from an apparatus that includes a launch carriage that moves along a launch guide. The carriage can accelerate when portions of the carriage and/or the launch guide move relative to each other. A gripper carried by the launch carriage can have at least one grip portion in contact with the aircraft while the launch carriage accelerates along the launch axis. The at least one grip portion can move out of contact with the aircraft as the launch carriage decelerates, releasing the aircraft for takeoff. A brake can arrest the motion of the gripper after launch.
Abstract:
A small unmanned airplane includes; a main wing having a camber airfoil whose under surface is approximately flat, narrowing in the shape of taper to a blade tip, leading edge of which holds sweepback angle, of flying wing type which has an aerodynamic surface of tailless wing type and is low aspect ratio; movable flaps extending approximately extreme breadth in trailing edge part of both left and right sides of the main wing, having a dihedral angle at least in level flight; vertical stabilizers placed at blade tips of left and right of the main wing; and two propellers installed on the top surface of the main wing. This can materialize miniaturization and weight saving of a small unmanned airplane for individual carrying capability and for suitability for such as lift-off by hand throw.
Abstract:
Methods and apparatuses for supporting aircraft components, including actuators are disclosed. An apparatus in accordance with one embodiment of the invention includes an actuator housing having an actuator receptacle that securely yet releasably receives an actuator. The actuator receptacle can include conformal walls that conform at least in part to the shape of the actuator and can accordingly squeeze the actuator and properly align the actuator. At least one of the actuator walls can further include a projection that is releasably received in a corresponding recess of the actuator. One of both of these features can releasably secure the actuator relative to the aircraft, reducing and/or eliminating the likelihood that the actuator will be misaligned and/or mispositioned relative to the aircraft during installation and/or replacement.
Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be launched from an apparatus that operates with a wedge action. A launch carriage carrying an unmanned aircraft is positioned on first and second launch members. At least one of the launch members moves relative to the other from a first position to a second position, causing the launch carriage to move from a first launch carriage position to a second launch carriage position. As the launch carriage moves, it accelerates the aircraft and releases the aircraft for takeoff.