Abstract:
A Micro Electro Mechanical Systems (MEMS) device comprising: a rotor, comprising a first plurality of rotor teeth and a second plurality of rotor teeth, formed in at least two layers of silicon-on-insulator (SOI) substrate, wherein each rotor tooth belonging to the first plurality of rotor teeth is formed in a first layer and each rotor tooth of the second plurality of rotor teeth is formed in a second layer; and a stator comprising a first plurality of stator teeth and a second plurality of stator teeth, formed in at least two layers of SOI substrate, wherein each stator tooth belonging to the first plurality of stator teeth is formed in a first layer, and each stator tooth of the second plurality of stator teeth is formed in a second layer.
Abstract:
The displacement amount monitoring electrode structure includes a fixed electrode and a movable electrode each having a comb-teeth shape including a base part and electrode fingers extending from the base part in a direction parallel to a substrate. The fixed electrode and the movable electrode face each other such that the electrode fingers are meshed together. The fixed electrode is fixed to the substrate and the movable electrode can be displaced in the direction. The displacement amount monitoring electrode structure monitors a displacement amount of a detection mass to be driven at a target amplitude based on a change amount of a capacitance between the fixed electrode and the movable electrode. A change sensitivity of the change amount of the capacitance with respect to a displacement amount of the movable electrode, becomes larger after the displacement of the movable electrode reaches a target amount corresponding to the target amplitude.
Abstract:
In one embodiment, an actuator includes a moving frame coupled to a fixed frame by a plurality of elongated parallel motion flexures for generally parallel motion relative to the fixed frame and between an as-fabricated position and a deployed position. The flexures are disposed at a first angle relative to a line extending perpendicularly to both the moving frame and the fixed frame when the moving frame is disposed in the as-fabricated position, and at a second angle relative to that same line when the moving frame is disposed in the deployed position. Arcuate movement of the first frame relative to the second frame is controlled by constraining the first angle to a value of less than about half of the sum of the first and second angles.
Abstract:
A device may comprise a flexure formed of a first semiconductor material. A first trench may be formed in the flexure. The first trench may separate the first semiconductor material into a first portion and a second portion thereof. An oxide layer may be formed in the first trench. The oxide layer may extend over a top portion of the first semiconductor material. A second semiconductor material may be formed on the oxide layer. The first trench and the oxide layer may cooperate to electrically isolate the first portion and the second portion from one another.
Abstract:
A method for manufacturing a micromechanical component is described, including the steps of: forming a first etch stop layer on a base substrate, the first etch stop layer being formed in such a way that it has a first pattern of through-cutouts; forming a first electrode-material layer on the first etch stop layer; forming a second etch stop layer on the first electrode-material layer, the second etch stop layer being formed in such a way that it has a second pattern of through-cutouts differing from the first pattern; forming a second electrode-material layer on the second etch stop layer; forming a patterned mask on the second electrode-material layer; and carrying out a first etching step in a first direction and a second etching step in a second direction counter to the first direction in order to etch at least one first electrode unit out of the first electrode-material layer and to etch at least one second electrode unit out of the second electrode-material layer. Also described are micromechanical components.
Abstract:
The present invention relates to a design and microfabrication method for microgrippers that are capable of grasping micro and nano objects of a large range of sizes and two-axis force sensing capabilities. Gripping motion is produced by one or more electrothermal actuators. Integrated force sensors along x and y directions enable the measurement of gripping forces as well as the forces applied at the end of microgripper arms along the normal direction, both with a resolution down to nanoNewton. The microfabrication method enables monolithic integration of the actuators and the force sensors.
Abstract:
A device may comprise a flexure formed of a first semiconductor material. A first trench may be formed in the flexure. The first trench may separate the first semiconductor material into a first portion and a second portion thereof. An oxide layer may be formed in the first trench. The oxide layer may extend over a top portion of the first semiconductor material. A second semiconductor material may be formed on the oxide layer. The first trench and the oxide layer may cooperate to electrically isolate the first portion and the second portion from one another.
Abstract:
Techniques are disclosed for systems and methods to provide shock impact mitigation for MEMS structures. A MEMS structure may include one or more actuators. An actuator may include a first frame having a spine, where the spine includes a body and a tip. The actuator may include a second frame connected to the first frame and including a shock stop, where the shock stop includes a surface in proximity to the spine tip. An actuator may include a shock cushion spring fixed relative to the spine tip and situated substantially between the spine tip and the shock stop surface, where the shock cushion spring is adapted to protect the spine tip from contact with the shock stop surface.
Abstract:
A microelectromechanical sensor that in one embodiment includes a supporting structure, having a substrate and electrode structures anchored to the substrate; and a sensing mass, movable with respect to the supporting structure so that a distance between the sensing mass and the substrate is variable. The sensing mass is provided with movable electrodes capacitively coupled to the electrode structures. Each electrode structure comprises a first fixed electrode and a second fixed electrode mutually insulated by a dielectric region and arranged in succession in a direction substantially perpendicular to a face of the substrate.
Abstract:
In one embodiment, an actuator includes a moving frame coupled to a fixed frame by a plurality of elongated parallel motion flexures for generally parallel motion relative to the fixed frame and between an as-fabricated position and a deployed position. The flexures are disposed at a first angle relative to a line extending perpendicularly to both the moving frame and the fixed frame when the moving frame is disposed in the as-fabricated position, and at a second angle relative to that same line when the moving frame is disposed in the deployed position, Arcuate movement of the first frame relative to the second frame is controlled by constraining the first angle to a value of less than about half of the sum of the first and second angles.