Abstract:
A micromirror which comprises a mirror pivotally attached to a mount by a first pivoting structure that permits pivotal movement of the mirror relative to the mount about a first axis; a first comb drive which has a first position fixed relative to the mirror and second portion fixed relative to the mount. The first comb drive being for actuating the mirror about the first axis. A weight connected to the mirror, and the weight and mirror being on opposite sides of a fulcrum of the first pivoting structure. The first axis is non-parallel to a longitudinal axis extending through the weight and the mirror.
Abstract:
A MEMS element according to the present invention is provided with a base, an insulation layer fixed to one surface of the base, a first upper layer at least portions of which are fixed to the insulation layer, and a second upper layer provided surrounding the first upper layer and disposed being separated from the first upper layer by slits, wherein the first upper layer includes, at predetermined portions, protruding portions protruding toward the second upper layer, and the protruding portions are fixed to the insulation layer.
Abstract:
An electrostatic MEMS micromirror is provided, and may be used in a device such as a mobile phone, a microphone, a camera, a radar, or an optical switch. The electrostatic MEMS micromirror includes a support beam, a micromirror, and a drive component. The drive component includes a comb frame and a drive comb located in the comb frame. The support beam and the micromirror are mechanically coupled using the comb frame. Two sides of the comb frame that are mechanically coupled to the micromirror are separately located on two sides of a rotating axis determined by the support beam. The drive comb includes at least one comb pair. The comb pair includes a movable comb structure and a stationary comb structure. The movable comb structure includes a plurality of movable combs. One end of the movable comb is fastened to the comb frame.
Abstract:
A spacer assembly includes: an essentially-planer structural portion configured to position an image sensor on a MEMS actuator; an outer sub-portion configured to be mounted to the MEMS actuator; and an inner sub-portion configured to mount the image sensor.
Abstract:
A MEMS package including a fixed frame, a moveable platform and elastic restoring members is provided. The moveable platform is moved with respect to the fixed frame. The elastic restoring members are connected between the fixed frame and the moveable platform, and used to restore the moved moveable platform to an original position.
Abstract:
A method for manufacturing a micromechanical device layer is performed on a device wafer comprising a single layer of homogenous material. The method comprises patterning a first mask on a first face of the device wafer, the first mask patterning at least lateral dimensions of comb structures and outlines of large device structures. First trenches are etched, the first trenches defining the lateral dimensions of the at least comb structures and outlines of large device structures in a single deep etching process. Recession etching may be used on one or two faces of the device wafer for creating structures at least partially recessed below the respective surfaces of the device wafer. A double mask etching process may be used on one or two faces of the device wafer for creating structures at least partially recessed to mutually varying depths from the respective face of the device wafer.
Abstract:
An optical filter device (1000) includes: a first mirror (101) transmitting portion of incident light; a second mirror (201) spaced apart from the first mirror (101), and transmitting portion of the incident light; actuators (300) driving the first mirror (101) to change a space between the first mirror (101) and the second mirror (201); and a detection electrode (400) detecting displacement of the first mirror (101). The detection electrode (400) includes: a movable comb electrode (410) including movable combs (414) and connected to the first mirror (101); and a stationary comb electrode (420) including stationary combs (424) facing the movable combs (414) in parallel with each other. The movable combs (414) are displaced in parallel with the stationary combs (424) when the movable comb electrode (410) is displaced together with the first mirror (101).
Abstract:
Caging structures are disclosed for caging or otherwise reducing the mechanical shock pulse experienced by MEMS device beam structures during events that may cause mechanical shock to the MEMS device. The caging structures at least partially surround the beam such that they limit the motion of the beam in a direction perpendicular to the beam's longitudinal axis, thereby reducing stress on the beam during a mechanical shock event. The caging structures may be used in combination with mechanical shock-resistant beams.
Abstract:
A physical quantity sensor includes: a base substrate; a movable portion; a plurality of movable electrode fingers which are provided in the movable portion; a fixed electrode finger which is provided on the base substrate; and a fixing portion which fixes the movable portion to the base substrate. In the movable electrode fingers, a movable electrode finger which opposes the fixing portion in the first direction is included. A clearance between the movable electrode finger and the fixing portion is smaller than a clearance between the movable electrode finger and the fixed electrode finger. The width of the movable electrode finger is greater than the width of other movable electrode finger.
Abstract:
A physical quantity sensor includes a movable electrode side fixed section, a first fixed electrode side fixed section which has a first fixed electrode section and a second fixed electrode side fixed section which has a second fixed electrode section, a movable mass section which has a first movable electrode section that has a portion facing the first fixed electrode section and a second movable electrode section that has a portion facing the second fixed electrode section and which is formed in a shape that encloses the movable electrode side fixed section, the first fixed electrode side fixed section, and the second fixed electrode side fixed section in planar view, and an elastic section which connects the movable electrode side fixed section and the movable mass section.