Abstract:
A liquid crystal polyester composition contains: a liquid crystal polyester in an amount of 100 parts by mass as well as a fibrous filler and a plate-like filler in an amount of not less than 65 parts by mass and not more than 100 parts by mass in total. The fibrous filler in the composition has a number average fiber diameter of not less than 5 μm and not more than 15 μm and a number average fiber length of more than 200 μm and less than 400 μm. The mass ratio of the fibrous filler to the plate-like filler in the composition is not less than 3 and not more than 15. The flow starting temperature of the composition is not lower than 250° C. and lower than 314° C.
Abstract:
A nylon compound is disclosed having good through plane thermal conductivity and improved physical strength. The compound comprises a combination of nylon, graphite, and long glass fibers. The through plane thermal conductivity of the compound ranges from about 1 W/m·K to about 4 W/m·K, as measured by the C-Therm Test described herein. This nylon compound is also electrically conductive, preferably having a surface resistivity ranging from about 1×103 Ohm/sq to about 1×105 Ohm/sq as measured by IEC 60093.
Abstract:
The purpose of the present invention is to provide a polyester resin composition for a reflection plate having high reflectance and small decrease of reflectance under exposure to heat during production of an LED package or reflow soldering step for mounting, or exposure to heat and light from a light source. A polyester resin composition of the present invention contains: 30-80% by mass of (A) a polyester resin having a melting point or glass transition temperature of 250° C. or more as measured by DSC; 5-30% by mass of (B) a fibrous reinforcing material having an average fiber length (l) of 2-300 μm, an average fiber diameter (d) of 0.05-18 μm and an aspect ratio (l/d) of 2-20, said aspect ratio being a quotient of 1 by d; and 5-50% by mass of (C) a white pigment (with the total of (A), (B) and (C) being 100% by mass).
Abstract:
A component comprises a first part and a second part, wherein said second part is in contact with said first part, wherein: (i) said first part comprises a polymer having a repeat unit of formula —O-Ph-O-Ph-CO-Ph- I and a repeat unit of formula —O-Ph-Ph-O-Ph-CO-Ph II wherein Ph represents a phenylene moiety; and (ii) said second part comprises a metal.
Abstract:
A fiber reinforced powder paint provides improved flexural fatigue resistance for composites substrates. Fiber loading in the powder is greater than 40%. Aramid fiber loading in an epoxy based powder paint is exemplified. A composite bow limb coated with the powder paint survives a remarkably greater number of bending cycles before failure when coated with the powder paint.
Abstract:
Provided is a long fiber reinforced plastic composite material comprising: a thermoplastic plastic resin; and long fibers dispersed so as to have unidirectional orientation, wherein the content of the unidirectionally oriented long fibers is 70 to 100% by weight in the total content of the long fibers.
Abstract:
Disclosed herein is a flooring material including: a plasticizer; fibers comprising at least one type of inorganic fibers or at least one type of organic fibers; and a thermoplastic resin. The fibers have an alignment. In addition, a method for manufacturing a flooring material is also disclosed. The method includes preparing a first mixture by mixing a liquid plasticizer with fibers comprising at least one type of inorganic fibers or at least one type of organic fibers; preparing a second mixture in which the fibers are dispersed in the liquid plasticizer by agitating the first mixture; preparing a third mixture by mixing the second mixture with a thermoplastic resin; and forming a floor material through thermo-compression of the third mixture.
Abstract:
A composite forming material of the present invention in which a fiberglass and a thermoplastic resin are compounded, where the fiberglass is a glass wool and a surface treatment is performed on the glass wool by spraying a solution which includes a silane coupling agent and/or a film former, a weight percent of the silane coupling agent to the glass wool is 0.24 wt %, and a weight percent of the film former to the glass wool is 2.4 wt %, the mean length of the glass wool is 600 μm, and the diameter is 3.4 μm.
Abstract:
The present invention is to provide a thermoplastic resin composition capable of providing a molded article that is excellent in capability of shielding millimeter waves. A thermoplastic resin composition for a molded article having a capability of shielding millimeter waves, containing (A) a thermoplastic resin and (B) carbon long fibers having a fiber length of from 3 to 30 mm in an amount of from 0.5 to 5% by mass. A molded article obtained from the composition is excellent in capability of shielding millimeter waves and can be used as a protective member for a transmitting and receiving antenna of a millimeter wave radar.
Abstract:
A nanospike hybrid carbon black product includes a plurality of carbon black aggregates. Each of the carbon black aggregates has a surface with a plurality of carbon nanospike formed thereon. The carbon nanospikes may each have a length between about 5 nm and 100 nm, and a width between about 5 nm and about 50 nm. A method for manufacturing the nanospike hybrid carbon black product includes the steps of injecting a primary carbon feedstock into a carbon black reactor, and combusting the carbon feedstock under a predetermined high temperature in the carbon black reactor to form carbon black aggregates. A catalyst is then deposited on surfaces of the carbon black aggregates. A secondary carbon feedstock is injected into the carbon black reactor, and reacted with the catalyst to grow carbon nanospikes on the surfaces of the carbon black aggregates.