Abstract:
Carbon nanostructures free of an adhered growth substrate can include a plurality of carbon nanotubes that are branched, crosslinked, and share common walls with one another. Under applied shear, crosslinks between the carbon nanotubes in carbon nanostructures can break to form fractured carbon nanotubes that are branched and share common walls. Methods for making polymer composites from carbon nanostructures can include combining a polymer matrix and a plurality of carbon nanostructures that are free of an adhered growth substrate, and dispersing the carbon nanostructures in the polymer matrix under applied shear. The applied shear breaks crosslinks between the carbon nanotubes to form a plurality of fractured carbon nanotubes that are dispersed as individuals in the polymer matrix. Polymer composites can include a polymer matrix and a plurality of fractured carbon nanotubes dispersed as individuals in the polymer matrix.
Abstract:
A composition including a medium and surfactant-free nanoparticles (SFNPs) at different dispersion state or aggregation form. The composition includes: (a) a composition of a medium and surfactant-free nanoparticles in primary form, wherein the dielectric constant value (DE value) of the medium is equal to or larger than the intrinsic dielectric constant value (IDE) of the SFNPs and smaller than about 1.5 times of the IDE of the SFNPs; (b) a composition of a medium and reaction-limited aggregation form of SFNPs, wherein the DE value of the medium is much larger than the IDE of the surfactant-free nanoparticles; (c) a composition of a medium and diffusion-limited aggregation form of SFNPs, wherein the DE value of the medium is smaller than the IDE of the surfactant-free nanoparticles; and (d) a composition comprising redispersible aggregation form of surfactant-free nanoparticles, wherein the surfactant-free nanoparticles are induced to aggregate in the diffusion-limited fashion in a medium with a DE value that is smaller than the IDE of the surfactant-free nanoparticles.
Abstract:
An emulsified aqueous ink comprising an electrorheological fluid including a liquid phase and a solid phase, and a co-solvent, which is suitable for use in an indirect printing method.
Abstract:
Nanoplatelet forms of metal hydroxide and metal oxide are provided, as well as methods for preparing same. The nanoplatelets are suitable for use as fire retardants and as agents for chemical or biological decontamination.
Abstract:
A composition and a method are provided for graphene reinforced polyethylene terephthalate (PET). Graphene nanoplatelets (GNPs) comprising multi-layer graphene are used to reinforce PET, thereby improving the properties of PET for various new applications. Master-batches comprising polyethylene terephthalate with dispersed graphene nanoplatelets are obtained by way of compounding. The master-batches are used to form PET-GNP nanocomposites at weight fractions ranging between 0.5% and 15%. In some embodiments, PET and GNPs are melt compounded by way of twin-screw extrusion. In some embodiments, ultrasound is coupled with a twin-screw extruder so as to assist with melt compounding. In some embodiments, the PET-GNP nanocomposites are prepared by way of high-speed injection molding. The PET-GNP nanocomposites are compared by way of their mechanical, thermal, and rheological properties so as to contrast different compounding processes.
Abstract:
A rubber composition having extremely high electrical conductivity is provided. The rubber composition contains nitrile rubber (A) having an α,β-ethylenic unsaturated nitrile monomer unit and an iodine value of 100 or lower, and carbon nanotubes (B) having the average diameter (Av) and diameter distribution (3σ) that satisfy the following relational expression: 0.60>3σ/Av>0.20.
Abstract:
Provided is a film for a transparent screen which can clearly display merchandise information, advertisement, or the like on a transparent partition or the like by projection without compromising the transmission visibility. A film for a transparent screen according to the present invention includes: a resin layer; and inorganic particles at least a portion of which is contained in an aggregated state in the resin layer, wherein primary particles of the inorganic particles have a median diameter of 0.1 to 50 nm and a maximum particle size of 10 to 500 nm, and the content of the inorganic particles is 0.015 to 1.2% by mass with respect to the resin.
Abstract:
Variations of this invention provide durable, impact-resistant structural coatings that have both dewetting and anti-icing properties. The coatings in some embodiments possess a self-similar structure that combines a low-cost matrix with two feature sizes that are tuned to affect the wetting of water and freezing of water on the surface. Dewetting and anti-icing performance is simultaneously achieved in a structural coating comprising multiple layers, wherein each layer includes (a) a continuous matrix; (b) discrete templates dispersed that promote surface roughness to inhibit wetting of water; and (c) nanoparticles that inhibit heterogeneous nucleation of water. These structural coatings utilize low-cost, lightweight, and environmentally benign materials that can be rapidly sprayed over large areas using convenient coating processes. The presence of multiple layers means that if the surface is damaged during use, freshly exposed surface will expose a coating identical to that which was removed, for extended lifetime.
Abstract:
Methods of preparing high-density polyethylene (HDPE) nanocomposites by in situ polymerization with a zirconocene catalyst, a methylaluminoxane cocatalyst, a calcium zirconate nanofiller in a solvent. The calcium zirconate nanofiller, which is dispersed across the polyethylene matrix, is found to enhance catalyst activity, and other properties of the HDPE nanocomposites produced, including but not limited to flame retardency, crystallinity and surface morphology.
Abstract:
Dispersion and method for the production of same. In one embodiment, the dispersion consists of a dispersing liquid and at least one solid substance that is distributed in the dispersing liquid. In order to obtain a dispersion with particularly good properties, it is provided that the dispersing liquid has an aqueous and/or non-aqueous base, that the at least one solid substance is formed of graphite and/or of carbon nanomaterial and/or of coke and/or of porous carbon, and that the at least one solid substance is distributed homogeneously and stably in the dispersing liquid. A method for the production of such a dispersion is provided such that the dispersion is produced by applying a strong accelerating voltage. In addition, various advantageous uses of such a dispersion are indicated.