Abstract:
The present invention provides fully renewable turbine and diesel fuels derived completely from biomass sources. In one embodiment the fully renewable turbine fuel is comprised of mesitylene and at least one alkane. Preferably, the turbine fuel comprises from about 50 to 99 wt % mesitylene and from about 1 to 50 wt % of at least one alkane. In another embodiment the diesel fuel comprises mesitylene, octadecane, and optionally octane or nonane. Preferably, the diesel fuel comprises from about 50 to 99 wt % mesitylene, and from about 1 to 50 wt % octadecane. These biomass derived fuels may be formulated to have a wide range of cetane values and differing freezing and boiling points.
Abstract:
An improved method for desulfurizing a fuel stream such as a diesel stream is disclosed which includes generation of a sulfone oil, the desulfurization of the sulfone oil and the recycling of the resulting biphenyl-rich stream and ultra-low sulfur diesel streams. The method includes combining a thiophene-rich diesel stream with an oxidant to oxidize the thiophenes to sulfones to provide a sulfone-rich diesel stream. Sulfone oil is extracted from the sulfone-rich diesel stream to provide sulfone oil and a first low-sulfur diesel stream The low-sulfur diesel stream is recycled. The sulfone-rich oil stream is combined with an aqueous oxidant-containing stream, such as caustic stream, which oxidizes the sulfones to biphenyls and forms sulfite to provide a second low-sulfur diesel stream.
Abstract:
An integrated process for producing diesel fuel from feedstocks, including diesel fuel production under sour conditions, is provided. The ability to process feedstocks under higher sulfur and/or nitrogen conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. In addition to the benefits in sour service, the process also returns to clean service activity levels more quickly.
Abstract:
The invention provides A blend of FT derived diesel, crude derived diesel, and CFPP improving additive, wherein the FT diesel is from 1 vol % to 50 vol % of the blend, said blend having a CFPP of below −18° C. The invention extends to use of FT diesel as a blendcomponent for a compression ignition fuel blend, said blend including the FT diesel, a crude derived diesel fuel and a CFPP improver additive, wherein the FT diesel is from 1 vol % to 50 vol % of the blend, which blend has a CFPP of below −20° C.
Abstract:
Biogases such as natural gas and other gases capable of being biologically derived by digestion of organic matter are converted to a clean-burning hydrocarbon liquid fuel in a continuous process wherein a biogas is fed to a reaction vessel where the biogas contacts a liquid petroleum fraction and a transition metal catalyst immersed in the liquid, vaporized product gas is drawn from a vapor space above the liquid level, condensed, and fed to a product vessel where condensate is separated from uncondensed gas and drawn off as the liquid product fuel as uncondensed gas is recycled to the reaction vessel.
Abstract:
An integrated process has been developed for producing diesel boiling range fuel from renewable feedstocks such as plant and animal fats and oils and using a byproduct naphtha as a denaturant for ethanol. The process involves treating a renewable feedstock by hydrogenating and deoxygenating i.e. decarboxylating, decarbonylating, and/or hydrodeoxygenating to provide a hydrocarbon fraction useful as a diesel fuel or diesel boiling range fuel blending component. If desired, the hydrocarbon fraction can be isomerized to improve cold flow properties. A byproduct naphtha stream from the diesel boiling range fuel production process is used as the denaturant in an alcohol denaturing process for the generation of denaturized ethanol.
Abstract:
A diesel fuel composition comprising a (1) sulfur content of less than 10 ppm; (2) a flash point of greater than 50° C.; (3) a UV absorbance, Atotal, of less than 1.5 as determined by the formula comprising Atotal=Ax+10(Ay) wherein Ax is the UV absorbance at 270 nanometers; and wherein Ay is the UV absorbance at 310 nanometers; (4) a naphthene content of greater than 5 percent; (5) a cloud point of less than −12° C.; (6) a nitrogen content of less than 10 ppm; and (7) a 5% distillation point of greater than 300 F and a 95% distillation point of greater than 600 F.
Abstract:
A cold-stabilized fuel oil composition comprising a major proportion by weight of a middle distillate fuel which boils in the range of 120-500° C. and minor proportions by weight of (A) at least one cold flow improver, (B) at least one detergent additive and (C) at least one cold solubilizer I which has at least one radical having at least 4 carbon atoms.
Abstract:
Provided herein are, among other things, jet fuel compositions and methods of making and using the same. In some embodiments, the fuel compositions comprise at least a fuel component readily and efficiently produced, at least in part, from a microorganism. In certain embodiments, the fuel compositions provided herein comprise a high concentration of at least a bioengineered fuel component. In further embodiments, the fuel compositions provided herein comprise amorphane.
Abstract:
Provided herein are, among other things, jet fuel compositions and methods of making and using the same. In some embodiments, the fuel compositions comprise at least a fuel component readily and efficiently produced, at least in part, from a microorganism. In certain embodiments, the fuel compositions provided herein comprise a high concentration of at least a bioengineered fuel component. In further embodiments, the fuel compositions provided herein comprise amorphane.