Abstract:
A method, medium, and system reducing the computational complexity of a Simultaneous Localization And Mapping (SLAM) algorithm that can be applied to mobile robots. A system estimating the pose of a mobile robot with the aid of a particle filter using a plurality of particles includes a sensor which detects a variation in the pose of a mobile robot, a particle filter unit which determines the poses and weights of current particles by applying the detected pose variation to previous particles, and an evolution unit which updates the poses and weights of the current particles by applying an evolution algorithm to the poses and weights of the current particles.
Abstract:
A method of navigating a mobile robotic device may include receiving, by a mobile robotic device, a wireless transmission from a transponder associated with an object, where the object is within a range of the mobile robotic device and in response to receiving the notification, altering a navigation course by the mobile robotic device to allow the object to pass the mobile robotic device. The mobile robotic device may be preprogrammed with at least a portion of the navigation course. The method may include resuming the navigation course by the mobile robotic device.
Abstract:
Disclosed are a map building apparatus and method using a distance measurement. According to an aspect, by creating a first map and a second map respectively using the characteristics of different characteristic areas based on a distance-voltage characteristics of a distance measurement sensor, and combining the first map with the second map, a grid map is created. Accordingly, since a map regarding a peripheral environment is created using plural areas of the distance-voltage characteristics, a more accurate map may be created.
Abstract:
An embodiment of the invention provides a control method of a cleaning robot. The method includes the steps of: forming a cleaning area according to at least three points which are selected from a light generating device, a charging station or an obstacle; moving the cleaning robot along an outer of the cleaning area from a first position; recording a first cleaning route when the cleaning robot returns back to the first position; moving the cleaning robot to a second position and planning a second cleaning route according to the first cleaning route; and moving the cleaning robot along the second cleaning route.
Abstract:
A robot cleaner is provided. The robot cleaner may include a casing including a moving device, an image input disposed in the casing, the image input including a plurality of light emitting parts that emits light toward an obstacle and an image sensor that acquires a 3D image of the obstacle onto which the light is emitted by the plurality of light emitting parts, and a main controller that extracts 3D data with respect to the obstacle from the 3D image of the obstacle acquired by the image input to control the moving device.
Abstract:
Disclosed are a cleaning robot system and its method for controlling which make it possible to reliably and quickly clean with the aid of the cleaning robot. The cleaning robot system comprises at least one external device each formed of an indicator and a virtual wall setting function, with the aid of which cleaning work can be performed by the unit of blocks about a cleaning area reference point, not leaving non-cleaned area behind. Since the access of the cleaning robot can be restricted by means of a virtual wall set by an external device, any damages of furniture due to a collision of the cleaning robot can be prevented, and the cleaning robot can be barred from escaping from the set cleaning area.
Abstract:
A method and apparatus for estimating the pose of a mobile robot using a particle filter is provided. The apparatus includes an odometer which detects a variation in the pose of a mobile robot, a feature-processing module which extracts at least one feature from an upward image captured by the mobile robot, and a particle filter module which determines current poses and weights of a plurality of particles by applying the mobile robot pose variation detected by the odometer and the feature extracted by the feature-processing module to previous poses and weights of the particles.
Abstract:
A method of classifying and collecting feature information of an area according to a robot's moving path, a robot controlled by area features, and a method and apparatus for composing a user interface using the area features are disclosed. The robot includes a plurality of sensor modules to collect feature information of a predetermined area along a moving path of the robot, and an analyzer to analyze the collected feature information of the predetermined area according to a predetermined reference range and to classify the collected feature information into a plurality of groups.
Abstract:
A robot cleaner and a control method thereof includes determining whether a first cleaning mode has been selected, upon determining that the first cleaning mode has been selected, defining a plurality of cleaning regions based on a position of the robot cleaner, and sequentially cleaning the defined cleaning regions.
Abstract:
A coverage robot includes a drive configured to maneuver the robot as directed by a controller, a stasis indication wheel rotatable about a first axis perpendicular to a direction of forward travel, and a suspension supporting the wheel. The stasis indication wheel defines a first reflective portion and a second reflective portion. The second reflective portion is substantially less reflective than the first reflective portion. The suspension permits movement of the wheel in a direction other than rotation about the first axis. A signal emitter is disposed remotely from the wheel and positioned to direct a signal that sequentially is intercepted by the first and second reflective portions of the wheel. A signal receiver is positioned to receive the reflected signal by the rotating wheel. Communication between the emitter and the receiver is affected by rolling transitions between the first and second reflective portions during permitted movement of the wheel.