Abstract:
In performing SVD-MIMO transmission, a set-up procedure is simplified while assuring a satisfactory decoding capability with a reduced number of antennas. A transmitter estimates channel information based on reference signals sent from a receiver, determines a transmit antenna weighting coefficient matrix based on the channel information, calculates a weight to be assigned to each of components of a multiplexed signal, and sends, to the receiver, training signals for respective signal components, the training signals being weighted by the calculated weights. On the other hand, the receiver determines a receive antenna weighting coefficient matrix based on the received training signals.
Abstract:
Techniques for supporting MIMO transmission with layer permutation are described. In one aspect, multiple codewords may be generated for transmission from multiple antennas (e.g., virtual antennas), with the number of codewords being less than the number of antennas. Each codeword may be mapped across the multiple antennas. Two codewords may be generated. For rank 3, the first codeword may be mapped to one layer (or one antenna on each subcarrier), and the second codeword may be mapped to two layers (or two antennas on each subcarrier). For rank 4, each codeword may be mapped to two layers. In another aspect, a base CQI indicative of an average signal quality may be determined. A delta CQI indicative of improvement over the average signal quality may also be determined. In yet another aspect, selection may be performed with different penalty factors for different ranks or number of codewords.
Abstract:
A transmitter includes a mapping unit that maps first information data to a first layer and maps second information data a part of which is duplicative of and a part of which is different from the first information data to a second layer, a coding unit that generates transmission data by performing error detection coding and error correction coding on the first and second information data, and a transmitting unit that transmits the transmission data from the antennas corresponding to the respective layers. A receiver includes a reception processing unit that separates received data into layer data, a decoding unit that generates a soft-decision value for each of the layers, a combining unit that combines soft-decision values corresponding to information data mapped to the plurality of layers in duplicate, and a deciding unit that performs hard-decision on the layer data using a soft-decision value.
Abstract:
A multiple-access MIMO WLAN system that employs MIMO, OFDM, and TDD. The system (1) uses a channel structure with a number of configurable transport channels, (2) supports multiple rates and transmission modes, which are configurable based on channel conditions and user terminal capabilities, (3) employs a pilot structure with several types of pilot (e.g., beacon, MIMO, steered reference, and carrier pilots) for different functions, (4) implements rate, timing, and power control loops for proper system operation, and (5) employs random access for system access by the user terminals, fast acknowledgment, and quick resource assignments. Calibration may be performed to account for differences in the frequency responses of transmit/receive chains at the access point and user terminals. The spatial processing may then be simplified by taking advantage of the reciprocal nature of the downlink and uplink and the calibration.
Abstract:
Various aspects of a system for an adaptive VBLAST receiver for wireless MIMO detection may comprise utilizing log likelihood ratios (LLR) to selectively cancel interference in a received signal when information contained in one or more layers is encoded. Following the selective cancellation of interference, further computations may be performed on the residual received signal. Various aspects of the invention may comprise a linear detector with improved performance in comparison to some conventional VBLAST receivers. Performance may be measured by, for example, a packet error rate (PER) for a given signal to noise ratio (SNR) associated with the received signal.
Abstract:
An automatic retransmission request control system in an OFDM-MIMO communication system includes a retransmission mode selection part which selects a retransmission mode from among (a) a mode in which to transmit the data, which are to be retransmitted, via the same antenna as in the previous transmission, while transmitting, at the same time, new data by use of an antenna via which no data retransmission is requested; (b) a mode in which to transmit the data, which are to be retransmitted, via an antenna via which no retransmission is requested, while transmitting new data via another antenna at the same time; (c) a mode in which to use STBC to retransmit the data via an antenna via which no retransmission is requested; and (d) a mode in which to use STBC to retransmit the data via all the available antennas.
Abstract:
A transmitter apparatus wherein a relatively simple structure is used to suppress burst errors without changing the block sizes of encoded blocks even when the number of modulation multi-values is increased. An encoding part subjects transport data to a block encoding process to form block encoded data. A modulating part modulates the block encoded data to form data symbols; and an arranging (interleaving) part arranges (interleaves) the block encoded data in such a manner that the intra-block encoded data of the encoded blocks, which include their respective single different data symbol, get together, and then supplies the arranged (interleaved) block encoded data to the modulating part. In this way, there can be provided a transmitter apparatus wherein a relatively simple structure is used to suppress burst errors without changing the block sizes of encoded blocks even when the number of modulation multi-values is increased.
Abstract:
An automatic retransmission request control system in an OFDM-MIMO communication system includes a retransmission mode selection part which selects a retransmission mode from among (a) a mode in which to transmit the data, which are to be retransmitted, via the same antenna as in the previous transmission, while transmitting, at the same time, new data by use of an antenna via which no data retransmission is requested; (b) a mode in which to transmit the data, which are to be retransmitted, via an antenna via which no retransmission is requested, while transmitting new data via another antenna at the same time; (c) a mode in which to use STBC to retransmit the data via an antenna via which no retransmission is requested; and (d) a mode in which to use STBC to retransmit the data via all the available antennas.
Abstract:
The optimal power allocation method for an LSSTC wireless transmission system utilizes Layered Steered Space-Time Codes (LSSTC), a recently proposed multiple-input multiple-output (MIMO) system that combines the benefits of vertical Bell Labs space-time (V-BLAST) scheme, space-time block codes (STBC), and beamforming. A new downlink scheme employs LSSTC with optimal power allocation based on the assumption that the user feeds the base station (BS) with the average signal-to-noise ratio (SNR) per V-BLAST layer through the uplink feedback channel. Such a system enhances the error performance by assigning power to the layers in an optimum manner.
Abstract:
A non-terminated packet is transmitted, by utilizing a spatial layer responded with an ACK, which is assumed as a released layer. Alternatively, a non-terminated packet is transmitted by using a released layer and an original spatial layer in combination. Alternatively, a new packet is transmitted in a released layer by utilizating time till termination of transmission of a non-terminated packet. A wireless communication system effectively utilizing a released layer, a terminal and a base station.