Abstract:
A device includes a substrate. The substrate further includes a first major surface including a plurality of lands, and a second major surface. At least one component is attached to at least some of the plurality of pads on the first major surface. At least one sacrificial component is attached to the first major surface. The at least one component has a first height with respect to the first major surface, and the at least one sacrificial component has a second height with respect to the first major surface. The second height is greater than the first height. The sacrificial component includes a fuse.
Abstract:
A full bridge circuit including four switching elements (Q1 to Q4) is alternated with a high switching frequency and a series-connected resonance circuit (5) including an inductor (L2) and a capacitor (C2) is made to resonate at a switching frequency of the full bridge circuit multiplied by an integer (for example, frequency multiplied by three), thereby generating a high voltage pulse for start up. After a high-pressure discharge lamp (DL) is started up, the full bridge circuit is alternated with a low switching frequency so as to operate as a step-down chopper for inverting the output polarity, thereby stably supplying rectangular wave voltage of low frequency to the high-pressure discharge lamp (DL) via a filter circuit including an inductor (L1) and a capacitor (C1).
Abstract:
A device includes a substrate. The substrate further includes a first major surface including a plurality of lands, and a second major surface. At least one component is attached to at least some of the plurality of pads on the first major surface. At least one sacrificial component is attached to the first major surface. The at least one component has a first height with respect to the first major surface, and the at least one sacrificial component has a second height with respect to the first major surface. The second height is greater than the first height. The sacrificial component includes a fuse.
Abstract:
The present invention relates to a substantially package-like discrete electronic component of the type comprising a power electronic circuit, a body or casing, substantially parallelepiped, and electric connecting pins connected inside the body with said circuit and projecting from said body for an electric connection on the electronic printed circuit board. The body has a heat dissipating header having at least one surface emerging from the body and laying on a plane whereas the pins project from the body for a first section initially extended parallel to the plane. Advantageously a pair of pins has a substantially U-shaped bending, after the first section parallel to the plane for allowing a more stable bearing of the component during the step of welding to a heat dissipating intermediate die.
Abstract:
We disclose a technique to generate stretched solder columns (bumps) at the wafer level, suitable for wafer level packaging. This is accomplished through use of using two wafers—the standard (functional) wafer that contains the integrated circuits and a master (dummy) wafer on whose surface is provided an array of solder bumps that is the mirror image of that on the functional wafer. After suitable alignment, both sets of solder bumps are melted and then slowly brought together till they merge. Then, as they cool, they are slowly pulled apart thereby stretching the merged solder columns. Once the latter have fully solidified, they are separated from the master wafer only.
Abstract:
The present invention provides methods for packaging small size memory cards wherein the methods comprise molding over a populated printed circuit board, thereby an encapsulated memory card is obtained with desirable external dimensions and features. In one aspect of the invention, methods are provided for preventing mold bleed underneath of the contact pads of memory cards. In one embodiment, the mold bleeding is prevented by using slidable holding pins that exert pressure directly upon the contact pins during the molding process. In another embodiments, the mold bleeding is prevented by covering the contact pads with temporary substrate coverage during the molding process. In yet another embodiment, the mold bleeding is prevented by using pressing edges that exert pressure directly upon the area of contact pads during the molding process. In still another embodiment, the mold bleeding is prevented by using vacuum pressure to secure the populated PCB onto the bottom of a molding apparatus. In yet still another embodiment, the mold bleeding is prevented by mounting dummy components onto the area opposite to the contact pads in a populated PCB, thereby the dummy components exert direct pressure to the contact pads during the molding process.
Abstract:
The invention relates to a module component having chip components buried in a circuit board, and a method of manufacturing the same, and more specifically it relates to a module component capable of obtaining desired circuit characteristics and functions stably if the size of the component is reduced, being produced very efficiently, and suited to machine mounting, and a method of manufacturing the same. According to the invention, since a desired circuit is composed by disposing a specific number of chip components according to a specified rule, it is not necessary to heat the buried chip components at high temperature when forming a module, chip components are obtained in specified values, and the circuit characteristics, functions, and dimensional precision are stably obtained exactly as designed, and moreover since the chip components are disposed according to a specified rule, it is easy to automate insertion of chip components and increase its operation speed, even if the size of the chip components is reduced, and the circuit composition may be flexibly and easily changed only by changing the inserting position and type of chip components.
Abstract:
A soldering method and apparatus in which there is provided a tight contact cover tightly contacting a portion (unused portion) of a re-flow panel other than its portion facing a substrate to be soldered in such a manner as to suppress a hot wind tending to turn around to a part setting surface to diminish the thermal energy loss as well as to prevent the circuit quality from being lowered by the solder.
Abstract:
An assembly is disclosed that includes an etched hole-fill standoff; a tooling plate contacting the etched hole-fill stand-off, the stand-off and tooling plate being aligned to each other; a device having holes to be filled removably contacting the stand-off, the stand-off and device being aligned to each other; the device and the stand-off each having at least one hole, the hole of the device being aligned with the hole of the stand-off. An assembly is also disclosed comprising an etched hole-fill standoff, the stand-off comprising an etched layer bonded to a non-etched layer. A method of filling holes in a substrate having a plurality of holes to be filled includes the steps of providing an etched hole-fill stand-off, aligning the stand-off to a tooling plate, aligning the substrate to the stand off and placing the substrate in contact with the stand-off, and filling the plurality of holes of the substrate.
Abstract:
An offset measuring board is formed of a rectangular metal plate which can be positioned to a component mounting position by a positioning device and which has at least in proximity to one corner portion thereof a recognition through hole, as a recognition mark, having a black bottom face within a recessed portion.